Cargando…
Memory Capacity of Networks with Stochastic Binary Synapses
In standard attractor neural network models, specific patterns of activity are stored in the synaptic matrix, so that they become fixed point attractors of the network dynamics. The storage capacity of such networks has been quantified in two ways: the maximal number of patterns that can be stored,...
Autores principales: | Dubreuil, Alexis M., Amit, Yali, Brunel, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125071/ https://www.ncbi.nlm.nih.gov/pubmed/25101662 http://dx.doi.org/10.1371/journal.pcbi.1003727 |
Ejemplares similares
-
Memory capacity of networks with stochastic binary synapses
por: Dubreuil, Alexis, et al.
Publicado: (2013) -
Efficient supervised learning in networks with binary synapses
por: Baldassi, Carlo, et al.
Publicado: (2007) -
Stabilization of Memory States by Stochastic Facilitating Synapses
por: Miller, Paul
Publicado: (2013) -
Memory Maintenance in Synapses with Calcium-Based Plasticity in the Presence of Background Activity
por: Higgins, David, et al.
Publicado: (2014) -
Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model
por: De Pittà, Maurizio, et al.
Publicado: (2022)