Cargando…
Simulating Population Genetics of Pathogen Vectors in Changing Landscapes: Guidelines and Application with Triatoma brasiliensis
BACKGROUND: Understanding the mechanisms that influence the population dynamics and spatial genetic structure of the vectors of pathogens infecting humans is a central issue in tropical epidemiology. In view of the rapid changes in the features of landscape pathogen vectors live in, this issue requi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125301/ https://www.ncbi.nlm.nih.gov/pubmed/25102068 http://dx.doi.org/10.1371/journal.pntd.0003068 |
Sumario: | BACKGROUND: Understanding the mechanisms that influence the population dynamics and spatial genetic structure of the vectors of pathogens infecting humans is a central issue in tropical epidemiology. In view of the rapid changes in the features of landscape pathogen vectors live in, this issue requires new methods that consider both natural and human systems and their interactions. In this context, individual-based model (IBM) simulations represent powerful yet poorly developed approaches to explore the response of pathogen vectors in heterogeneous social-ecological systems, especially when field experiments cannot be performed. METHODOLOGY/PRINCIPAL FINDINGS: We first present guidelines for the use of a spatially explicit IBM, to simulate population genetics of pathogen vectors in changing landscapes. We then applied our model with Triatoma brasiliensis, originally restricted to sylvatic habitats and now found in peridomestic and domestic habitats, posing as the most important Trypanosoma cruzi vector in Northeastern Brazil. We focused on the effects of vector migration rate, maximum dispersal distance and attraction by domestic habitat on T. brasiliensis population dynamics and spatial genetic structure. Optimized for T. brasiliensis using field data pairwise fixation index (FST) from microsatellite loci, our simulations confirmed the importance of these three variables to understand vector genetic structure at the landscape level. We then ran prospective scenarios accounting for land-use change (deforestation and urbanization), which revealed that human-induced land-use change favored higher genetic diversity among sampling points. CONCLUSIONS/SIGNIFICANCE: Our work shows that mechanistic models may be useful tools to link observed patterns with processes involved in the population genetics of tropical pathogen vectors in heterogeneous social-ecological landscapes. Our hope is that our study may provide a testable and applicable modeling framework to a broad community of epidemiologists for formulating scenarios of landscape change consequences on vector dynamics, with potential implications for their surveillance and control. |
---|