Cargando…

Effects of aminoguanidine, a potent nitric oxide synthase inhibitor, on myocardial and organ structure in a rat model of hemorrhagic shock

BACKGROUND: Nitric oxide (NO) has been shown to increase following hemorrhagic shock (HS). Peroxynitrite is produced by the reaction of NO with reactive oxygen species, leads to nitrosative stress mediated organ injury. We examined the protective effects of a potent inhibitor of NO synthase, aminogu...

Descripción completa

Detalles Bibliográficos
Autor principal: Soliman, Mona M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126120/
https://www.ncbi.nlm.nih.gov/pubmed/25114430
http://dx.doi.org/10.4103/0974-2700.136864
Descripción
Sumario:BACKGROUND: Nitric oxide (NO) has been shown to increase following hemorrhagic shock (HS). Peroxynitrite is produced by the reaction of NO with reactive oxygen species, leads to nitrosative stress mediated organ injury. We examined the protective effects of a potent inhibitor of NO synthase, aminoguanidine (AG), on myocardial and multiple organ structure in a rat model of HS. MATERIALS AND METHODS: Male Sprague Dawley rats (300-350 g) were assigned to 3 experimental groups (n = 6 per group): (1) Normotensive rats (N), (2) HS rats and (3) HS rats treated with AG (HS-AG). Rats were hemorrhaged over 60 min to reach a mean arterial blood pressure of 40 mmHg. Rats were treated with 1 ml of 60 mg/kg AG intra-arterially after 60 min HS. Resuscitation was performed in vivo by the reinfusion of the shed blood for 30 min to restore normo-tension. Biopsy samples were taken for light and electron microscopy. RESULTS: Histological examination of hemorrhagic shocked untreated rats revealed structural damage. Less histological damage was observed in multiple organs in AG-treated rats. AG-treatment decreased the number of inflammatory cells and mitochondrial swollen in myocardial cells. CONCLUSION: AG treatment reduced microscopic damage and injury in multiple organs in a HS model in rats.