Cargando…

Response of Saccharomyces cerevisiae to the Stimulation of Lipopolysaccharide

Lipopolysaccharide, known as endotoxin, can stimulate potent host immune responses through the complex of Toll-like-receptor 4 and myeloid differentiation protein 2; but its influence on Saccharomyces cerevisiae, a model organism for studying eukaryotes, is not clear. In this study, we found that li...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Lulu, Li, Ye, Jiang, Linghuo, Wang, Xiaoyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126697/
https://www.ncbi.nlm.nih.gov/pubmed/25105496
http://dx.doi.org/10.1371/journal.pone.0104428
Descripción
Sumario:Lipopolysaccharide, known as endotoxin, can stimulate potent host immune responses through the complex of Toll-like-receptor 4 and myeloid differentiation protein 2; but its influence on Saccharomyces cerevisiae, a model organism for studying eukaryotes, is not clear. In this study, we found that lipopolysaccharide-treated S. cerevisiae cells could be stained by methylene blue, but did not die. Transcriptional profiling of the lipopolysaccharide-treated S. cerevisiae cells showed that 5745 genes were modulated: 2491 genes up-regulated and 3254 genes down-regulated. Significantly regulated genes (460 up-regulated genes and 135 down-regulated genes) in lipopolysaccharide-treated S. cerevisiae cells were analyzed on Gene Ontology, and used to establish physical protein-protein interaction network and protein phosphorylation network. Based on these analyses, most of the regulated genes in lipopolysaccharide-treated S. cerevisiae cells were related to cell wall, membrane, peroxisome and mitochondrion. Further experiments demonstrated that lipopolysaccharide stimulation caused the exposure of phosphatidylserine and the increase of mitochondrial membrane potential in S. cerevisiae cells, but levels of intracellular reactive oxygen species and metacaspase activation were not increased. This study demonstrated that lipopolysaccharide stimulation causes significant changes in S. cerevisiae cells, and the results would contribute to understand the response of eukaryotic cells to lipopolysaccharide stimulation.