Cargando…

A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission

While significant advances have been made in the prevention and treatment of malaria in recent years, these successes continue to fall short of the World Health Organization (WHO) goals for malaria control and elimination. For elimination strategies to be effective, limited disease transmission, ach...

Descripción completa

Detalles Bibliográficos
Autor principal: Makanga, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126813/
https://www.ncbi.nlm.nih.gov/pubmed/25069530
http://dx.doi.org/10.1186/1475-2875-13-291
_version_ 1782329970675154944
author Makanga, Michael
author_facet Makanga, Michael
author_sort Makanga, Michael
collection PubMed
description While significant advances have been made in the prevention and treatment of malaria in recent years, these successes continue to fall short of the World Health Organization (WHO) goals for malaria control and elimination. For elimination strategies to be effective, limited disease transmission, achieved through rapid reduction in the infectious parasite reservoir and decreased gametocyte carriage, will be critical. Artemisinin-based combination therapy (ACT) forms the cornerstone of WHO-recommended treatment for uncomplicated Plasmodium falciparum malaria, and in combination with other effective interventions will undoubtedly play a vital role in elimination programmes. The gametocytocidal properties of artemisinins are a bonus attribute; there is epidemiological evidence of reductions in malaria incidence and transmission in African regions since the introduction of these agents. Many studies and analyses have specifically investigated the effects of the ACT, artemether-lumefantrine (AL) on gametocyte carriage. In this systematic review of 62 articles published between 1998 and January 2014, the effects of AL on gametocyte carriage and malaria transmission are compared with other artemisinin-based anti-malarials and non-ACT. The impact of AL treatment of asymptomatic carriers on population gametocyte carriage, and the potential future role of AL in malaria elimination initiatives are also considered. Despite the inherent difficulties in comparing data from a range of different studies that also utilized different diagnostic approaches to assess baseline gametocyte counts, the gametocytocidal effect of AL was proportionately consistent across the studies reviewed, suggesting that AL will continue to play a vital role in the treatment of malaria and contribute to clearing the path towards malaria elimination. However, the specific place of AL is the subject of much ongoing research and will undoubtedly be dependent on different demographic and geographical scenarios. Utilizing ACT, such as AL, within malaria elimination strategies is also associated with a number of other challenges, such as balancing potential increased use of ACT (e g, treatment of asymptomatic carriers and home-based treatment) with rational use and avoidance of drug resistance development.
format Online
Article
Text
id pubmed-4126813
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41268132014-08-09 A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission Makanga, Michael Malar J Review While significant advances have been made in the prevention and treatment of malaria in recent years, these successes continue to fall short of the World Health Organization (WHO) goals for malaria control and elimination. For elimination strategies to be effective, limited disease transmission, achieved through rapid reduction in the infectious parasite reservoir and decreased gametocyte carriage, will be critical. Artemisinin-based combination therapy (ACT) forms the cornerstone of WHO-recommended treatment for uncomplicated Plasmodium falciparum malaria, and in combination with other effective interventions will undoubtedly play a vital role in elimination programmes. The gametocytocidal properties of artemisinins are a bonus attribute; there is epidemiological evidence of reductions in malaria incidence and transmission in African regions since the introduction of these agents. Many studies and analyses have specifically investigated the effects of the ACT, artemether-lumefantrine (AL) on gametocyte carriage. In this systematic review of 62 articles published between 1998 and January 2014, the effects of AL on gametocyte carriage and malaria transmission are compared with other artemisinin-based anti-malarials and non-ACT. The impact of AL treatment of asymptomatic carriers on population gametocyte carriage, and the potential future role of AL in malaria elimination initiatives are also considered. Despite the inherent difficulties in comparing data from a range of different studies that also utilized different diagnostic approaches to assess baseline gametocyte counts, the gametocytocidal effect of AL was proportionately consistent across the studies reviewed, suggesting that AL will continue to play a vital role in the treatment of malaria and contribute to clearing the path towards malaria elimination. However, the specific place of AL is the subject of much ongoing research and will undoubtedly be dependent on different demographic and geographical scenarios. Utilizing ACT, such as AL, within malaria elimination strategies is also associated with a number of other challenges, such as balancing potential increased use of ACT (e g, treatment of asymptomatic carriers and home-based treatment) with rational use and avoidance of drug resistance development. BioMed Central 2014-07-28 /pmc/articles/PMC4126813/ /pubmed/25069530 http://dx.doi.org/10.1186/1475-2875-13-291 Text en Copyright © 2014 Makanga; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Review
Makanga, Michael
A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission
title A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission
title_full A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission
title_fullStr A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission
title_full_unstemmed A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission
title_short A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission
title_sort review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126813/
https://www.ncbi.nlm.nih.gov/pubmed/25069530
http://dx.doi.org/10.1186/1475-2875-13-291
work_keys_str_mv AT makangamichael areviewoftheeffectsofartemetherlumefantrineongametocytecarriageanddiseasetransmission
AT makangamichael reviewoftheeffectsofartemetherlumefantrineongametocytecarriageanddiseasetransmission