Cargando…
Semi-Supervised Learning of Statistical Models for Natural Language Understanding
Natural language understanding is to specify a computational model that maps sentences to their semantic mean representation. In this paper, we propose a novel framework to train the statistical models without using expensive fully annotated data. In particular, the input of our framework is a set o...
Autores principales: | Zhou, Deyu, He, Yulan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127215/ https://www.ncbi.nlm.nih.gov/pubmed/25152899 http://dx.doi.org/10.1155/2014/121650 |
Ejemplares similares
-
Semi-supervised learning /
Publicado: (2010) -
Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer
por: Al-Azzam, Nosayba, et al.
Publicado: (2021) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
Semi-supervised learning in cancer diagnostics
por: Eckardt, Jan-Niklas, et al.
Publicado: (2022)