Cargando…
Recognition of 27-Class Protein Folds by Adding the Interaction of Segments and Motif Information
The recognition of protein folds is an important step for the prediction of protein structure and function. After the recognition of 27-class protein folds in 2001 by Ding and Dubchak, prediction algorithms, prediction parameters, and new datasets for the prediction of protein folds have been improv...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127253/ https://www.ncbi.nlm.nih.gov/pubmed/25136571 http://dx.doi.org/10.1155/2014/262850 |
_version_ | 1782330007538892800 |
---|---|
author | Feng, Zhenxing Hu, Xiuzhen |
author_facet | Feng, Zhenxing Hu, Xiuzhen |
author_sort | Feng, Zhenxing |
collection | PubMed |
description | The recognition of protein folds is an important step for the prediction of protein structure and function. After the recognition of 27-class protein folds in 2001 by Ding and Dubchak, prediction algorithms, prediction parameters, and new datasets for the prediction of protein folds have been improved. However, the influences of interactions from predicted secondary structure segments and motif information on protein folding have not been considered. Therefore, the recognition of 27-class protein folds with the interaction of segments and motif information is very important. Based on the 27-class folds dataset built by Liu et al., amino acid composition, the interactions of secondary structure segments, motif frequency, and predicted secondary structure information were extracted. Using the Random Forest algorithm and the ensemble classification strategy, 27-class protein folds and corresponding structural classification were identified by independent test. The overall accuracy of the testing set and structural classification measured up to 78.38% and 92.55%, respectively. When the training set and testing set were combined, the overall accuracy by 5-fold cross validation was 81.16%. In order to compare with the results of previous researchers, the method above was tested on Ding and Dubchak's dataset which has been widely used by many previous researchers, and an improved overall accuracy 70.24% was obtained. |
format | Online Article Text |
id | pubmed-4127253 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-41272532014-08-18 Recognition of 27-Class Protein Folds by Adding the Interaction of Segments and Motif Information Feng, Zhenxing Hu, Xiuzhen Biomed Res Int Research Article The recognition of protein folds is an important step for the prediction of protein structure and function. After the recognition of 27-class protein folds in 2001 by Ding and Dubchak, prediction algorithms, prediction parameters, and new datasets for the prediction of protein folds have been improved. However, the influences of interactions from predicted secondary structure segments and motif information on protein folding have not been considered. Therefore, the recognition of 27-class protein folds with the interaction of segments and motif information is very important. Based on the 27-class folds dataset built by Liu et al., amino acid composition, the interactions of secondary structure segments, motif frequency, and predicted secondary structure information were extracted. Using the Random Forest algorithm and the ensemble classification strategy, 27-class protein folds and corresponding structural classification were identified by independent test. The overall accuracy of the testing set and structural classification measured up to 78.38% and 92.55%, respectively. When the training set and testing set were combined, the overall accuracy by 5-fold cross validation was 81.16%. In order to compare with the results of previous researchers, the method above was tested on Ding and Dubchak's dataset which has been widely used by many previous researchers, and an improved overall accuracy 70.24% was obtained. Hindawi Publishing Corporation 2014 2014-07-21 /pmc/articles/PMC4127253/ /pubmed/25136571 http://dx.doi.org/10.1155/2014/262850 Text en Copyright © 2014 Z. Feng and X. Hu. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Feng, Zhenxing Hu, Xiuzhen Recognition of 27-Class Protein Folds by Adding the Interaction of Segments and Motif Information |
title | Recognition of 27-Class Protein Folds by Adding the Interaction of Segments and Motif Information |
title_full | Recognition of 27-Class Protein Folds by Adding the Interaction of Segments and Motif Information |
title_fullStr | Recognition of 27-Class Protein Folds by Adding the Interaction of Segments and Motif Information |
title_full_unstemmed | Recognition of 27-Class Protein Folds by Adding the Interaction of Segments and Motif Information |
title_short | Recognition of 27-Class Protein Folds by Adding the Interaction of Segments and Motif Information |
title_sort | recognition of 27-class protein folds by adding the interaction of segments and motif information |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127253/ https://www.ncbi.nlm.nih.gov/pubmed/25136571 http://dx.doi.org/10.1155/2014/262850 |
work_keys_str_mv | AT fengzhenxing recognitionof27classproteinfoldsbyaddingtheinteractionofsegmentsandmotifinformation AT huxiuzhen recognitionof27classproteinfoldsbyaddingtheinteractionofsegmentsandmotifinformation |