Cargando…
A Four-Stage Hybrid Model for Hydrological Time Series Forecasting
Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128719/ https://www.ncbi.nlm.nih.gov/pubmed/25111782 http://dx.doi.org/10.1371/journal.pone.0104663 |
Sumario: | Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. |
---|