Cargando…
An Automated Three-Dimensional Detection and Segmentation Method for Touching Cells by Integrating Concave Points Clustering and Random Walker Algorithm
Characterizing cytoarchitecture is crucial for understanding brain functions and neural diseases. In neuroanatomy, it is an important task to accurately extract cell populations' centroids and contours. Recent advances have permitted imaging at single cell resolution for an entire mouse brain u...
Autores principales: | He, Yong, Meng, Yunlong, Gong, Hui, Chen, Shangbin, Zhang, Bin, Ding, Wenxiang, Luo, Qingming, Li, Anan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128780/ https://www.ncbi.nlm.nih.gov/pubmed/25111442 http://dx.doi.org/10.1371/journal.pone.0104437 |
Ejemplares similares
-
iCut: an Integrative Cut Algorithm Enables Accurate Segmentation of Touching Cells
por: He, Yong, et al.
Publicado: (2015) -
Skeleton optimization of neuronal morphology based on three-dimensional shape restrictions
por: Jiang, Siqi, et al.
Publicado: (2020) -
An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function
por: Boţ, Radu Ioan, et al.
Publicado: (2022) -
Automated and Accurate Detection of Soma Location and Surface Morphology in Large-Scale 3D Neuron Images
por: Yan, Cheng, et al.
Publicado: (2013) -
Splitting ore from X-ray image based on improved robust concave-point algorithm
por: Wang, Lanhao, et al.
Publicado: (2023)