Cargando…
Displacement Back Analysis for a High Slope of the Dagangshan Hydroelectric Power Station Based on BP Neural Network and Particle Swarm Optimization
The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacemen...
Autores principales: | Liang, Zhengzhao, Gong, Bin, Tang, Chunan, Zhang, Yongbin, Ma, Tianhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129176/ https://www.ncbi.nlm.nih.gov/pubmed/25140345 http://dx.doi.org/10.1155/2014/741323 |
Ejemplares similares
-
Study of PLSR-BP model for stability assessment of loess slope based on particle swarm optimization
por: Gong, Bin
Publicado: (2021) -
An approach to increase the power output of Karnafuli Hydroelectric Power Station: A step to sustainable development in Bangladesh’s energy sector
por: Hossain, Fakir Sharif, et al.
Publicado: (2021) -
Integration of PV floating with hydroelectric power plants
por: Cazzaniga, Raniero, et al.
Publicado: (2019) -
The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis
por: Kalatehjari, Roohollah, et al.
Publicado: (2014) -
An Investigation of Health and Safety Measures in a Hydroelectric Power Plant
por: Acakpovi, Amevi, et al.
Publicado: (2016)