Cargando…

Muscle contraction and relaxation-response time in response to on or off status of visual stimulus

BACKGROUND: It is unclear whether response time is affected by a stimulus cue, such as a light turned on or off, or if there are differences in response to these cues during a muscle contraction task compared with a muscle relaxation task. The objective of this study was to assess the response time...

Descripción completa

Detalles Bibliográficos
Autores principales: Yotani, Kengo, Nakamoto, Hiroki, Ikudome, Sachi, Yuki, Atsumu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130429/
https://www.ncbi.nlm.nih.gov/pubmed/25085278
http://dx.doi.org/10.1186/1880-6805-33-23
Descripción
Sumario:BACKGROUND: It is unclear whether response time is affected by a stimulus cue, such as a light turned on or off, or if there are differences in response to these cues during a muscle contraction task compared with a muscle relaxation task. The objective of this study was to assess the response time of a relaxation task, including the contraction portion of the task, to a stimulus of a light turned on or off. In addition, we investigated the effect of the pre-contraction level on the relaxation task. RESULTS: Contraction response time was significantly shorter during the light-on status than during the light-off status (P <0.01), and relaxation response time in each maximum voluntary contraction was significantly longer during the light-on status than during the light-off status (P <0.01). The relaxation response time became longer in order of 25% to 75% maximum voluntary contraction regardless of light-on or -off status, and was significantly longer than the contraction response time (P <0.05-0.01). CONCLUSIONS: This study found that as the contraction level increased, the relaxation response time became longer than the contraction response time regardless of light status. However, contraction response time or relaxation response time findings were opposite to this during the light-on status and light-off status: contraction response time became shorter in the light-on status than in the light-off status and relaxation response time became longer in the light-on status than in the light-off status. These results suggest that the length of each response time is affected by motor control in the higher order brain and involves specific processing in the visual system.