Cargando…

Elevational variation in density dependence in a subtropical forest

Density-dependent mortality has been recognized as an important mechanism that underpins tree species diversity, especially in tropical forests. However, few studies have attempted to explore how density dependence varies with spatial scale and even fewer have attempted to identify why there is scal...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Meng, Yu, Shixiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130442/
https://www.ncbi.nlm.nih.gov/pubmed/25165522
http://dx.doi.org/10.1002/ece3.1123
Descripción
Sumario:Density-dependent mortality has been recognized as an important mechanism that underpins tree species diversity, especially in tropical forests. However, few studies have attempted to explore how density dependence varies with spatial scale and even fewer have attempted to identify why there is scale-dependent differentiation. In this study, we explore the elevational variation in density dependence. Three 1-ha permanent plots were established at low and high elevations in the Heishiding subtropical forest, southern China. Using data from 1200 1 m(2) seedling quadrats, comprising of 200 1 m(2) quadrats located in each 1-ha plot, we examined the variation in density dependence between elevations using a generalized linear mixed model with crossed random effects. A greenhouse experiment also investigated the potential effects of the soil biota on density-dependent differentiation. Our results demonstrated that density-dependent seedling mortality can vary between elevations in subtropical forests. Species found at a lower elevation suffered stronger negative density dependence than those found at a higher elevation. The greenhouse experiment indicated that two species that commonly occur at both elevations suffered more from soilborne pathogens during seed germination and seedling growth when they grew at the lower elevation, which implied that soil pathogens may play a crucial role in density-dependent spatial variation.