Cargando…

Identification of Post-translational Modifications of Plant Protein Complexes

Plants adapt quickly to changing environments due to elaborate perception and signaling systems. During pathogen attack, plants rapidly respond to infection via the recruitment and activation of immune complexes. Activation of immune complexes is associated with post-translational modifications (PTM...

Descripción completa

Detalles Bibliográficos
Autores principales: Piquerez, Sophie J. M., Balmuth, Alexi L., Sklenář, Jan, Jones, Alexandra M.E., Rathjen, John P., Ntoukakis, Vardis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130472/
https://www.ncbi.nlm.nih.gov/pubmed/24637539
http://dx.doi.org/10.3791/51095
_version_ 1782330329557630976
author Piquerez, Sophie J. M.
Balmuth, Alexi L.
Sklenář, Jan
Jones, Alexandra M.E.
Rathjen, John P.
Ntoukakis, Vardis
author_facet Piquerez, Sophie J. M.
Balmuth, Alexi L.
Sklenář, Jan
Jones, Alexandra M.E.
Rathjen, John P.
Ntoukakis, Vardis
author_sort Piquerez, Sophie J. M.
collection PubMed
description Plants adapt quickly to changing environments due to elaborate perception and signaling systems. During pathogen attack, plants rapidly respond to infection via the recruitment and activation of immune complexes. Activation of immune complexes is associated with post-translational modifications (PTMs) of proteins, such as phosphorylation, glycosylation, or ubiquitination. Understanding how these PTMs are choreographed will lead to a better understanding of how resistance is achieved. Here we describe a protein purification method for nucleotide-binding leucine-rich repeat (NB-LRR)-interacting proteins and the subsequent identification of their post-translational modifications (PTMs). With small modifications, the protocol can be applied for the purification of other plant protein complexes. The method is based on the expression of an epitope-tagged version of the protein of interest, which is subsequently partially purified by immunoprecipitation and subjected to mass spectrometry for identification of interacting proteins and PTMs. This protocol demonstrates that: i). Dynamic changes in PTMs such as phosphorylation can be detected by mass spectrometry; ii). It is important to have sufficient quantities of the protein of interest, and this can compensate for the lack of purity of the immunoprecipitate; iii). In order to detect PTMs of a protein of interest, this protein has to be immunoprecipitated to get a sufficient quantity of protein.
format Online
Article
Text
id pubmed-4130472
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher MyJove Corporation
record_format MEDLINE/PubMed
spelling pubmed-41304722014-08-14 Identification of Post-translational Modifications of Plant Protein Complexes Piquerez, Sophie J. M. Balmuth, Alexi L. Sklenář, Jan Jones, Alexandra M.E. Rathjen, John P. Ntoukakis, Vardis J Vis Exp Plant Biology Plants adapt quickly to changing environments due to elaborate perception and signaling systems. During pathogen attack, plants rapidly respond to infection via the recruitment and activation of immune complexes. Activation of immune complexes is associated with post-translational modifications (PTMs) of proteins, such as phosphorylation, glycosylation, or ubiquitination. Understanding how these PTMs are choreographed will lead to a better understanding of how resistance is achieved. Here we describe a protein purification method for nucleotide-binding leucine-rich repeat (NB-LRR)-interacting proteins and the subsequent identification of their post-translational modifications (PTMs). With small modifications, the protocol can be applied for the purification of other plant protein complexes. The method is based on the expression of an epitope-tagged version of the protein of interest, which is subsequently partially purified by immunoprecipitation and subjected to mass spectrometry for identification of interacting proteins and PTMs. This protocol demonstrates that: i). Dynamic changes in PTMs such as phosphorylation can be detected by mass spectrometry; ii). It is important to have sufficient quantities of the protein of interest, and this can compensate for the lack of purity of the immunoprecipitate; iii). In order to detect PTMs of a protein of interest, this protein has to be immunoprecipitated to get a sufficient quantity of protein. MyJove Corporation 2014-02-22 /pmc/articles/PMC4130472/ /pubmed/24637539 http://dx.doi.org/10.3791/51095 Text en Copyright © 2014, Journal of Visualized Experiments http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visithttp://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Plant Biology
Piquerez, Sophie J. M.
Balmuth, Alexi L.
Sklenář, Jan
Jones, Alexandra M.E.
Rathjen, John P.
Ntoukakis, Vardis
Identification of Post-translational Modifications of Plant Protein Complexes
title Identification of Post-translational Modifications of Plant Protein Complexes
title_full Identification of Post-translational Modifications of Plant Protein Complexes
title_fullStr Identification of Post-translational Modifications of Plant Protein Complexes
title_full_unstemmed Identification of Post-translational Modifications of Plant Protein Complexes
title_short Identification of Post-translational Modifications of Plant Protein Complexes
title_sort identification of post-translational modifications of plant protein complexes
topic Plant Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130472/
https://www.ncbi.nlm.nih.gov/pubmed/24637539
http://dx.doi.org/10.3791/51095
work_keys_str_mv AT piquerezsophiejm identificationofposttranslationalmodificationsofplantproteincomplexes
AT balmuthalexil identificationofposttranslationalmodificationsofplantproteincomplexes
AT sklenarjan identificationofposttranslationalmodificationsofplantproteincomplexes
AT jonesalexandrame identificationofposttranslationalmodificationsofplantproteincomplexes
AT rathjenjohnp identificationofposttranslationalmodificationsofplantproteincomplexes
AT ntoukakisvardis identificationofposttranslationalmodificationsofplantproteincomplexes