Cargando…
Learning a Weighted Meta-Sample Based Parameter Free Sparse Representation Classification for Microarray Data
Sparse representation classification (SRC) is one of the most promising classification methods for supervised learning. This method can effectively exploit discriminating information by introducing a [Image: see text] regularization terms to the data. With the desirable property of sparisty, SRC is...
Autores principales: | Liao, Bo, Jiang, Yan, Yuan, Guanqun, Zhu, Wen, Cai, Lijun, Cao, Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130588/ https://www.ncbi.nlm.nih.gov/pubmed/25115965 http://dx.doi.org/10.1371/journal.pone.0104314 |
Ejemplares similares
-
Maxdenominator Reweighted Sparse Representation for Tumor Classification
por: Li, Weibiao, et al.
Publicado: (2017) -
Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015) -
Correction: Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification
por: Bing, Lu, et al.
Publicado: (2017)