Cargando…

An Airway Epithelial iNOS-DUOX2-Thyroid Peroxidase Metabolome Drives Th1/Th2 Nitrative Stress in Human Severe Asthma

Severe refractory asthma is associated with enhanced nitrative stress. To determine the mechanisms for high nitrative stress in human severe asthma, 3-nitrotyrosine (3NT) was compared with Th1 and Th2 cytokine expression. In severe asthma, high 3NT levels were associated with high IFN-γ and low IL-1...

Descripción completa

Detalles Bibliográficos
Autores principales: Voraphani, N, Gladwin, MT, Contreras, AU, Kaminski, N, Tedrow, JR, Milosevic, J, Bleecker, ER, Meyers, DA, Ray, A, Ray, P, Erzurum, SC, Busse, WW, Zhao, J, Trudeau, JB, Wenzel, SE
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130801/
https://www.ncbi.nlm.nih.gov/pubmed/24518246
http://dx.doi.org/10.1038/mi.2014.6
Descripción
Sumario:Severe refractory asthma is associated with enhanced nitrative stress. To determine the mechanisms for high nitrative stress in human severe asthma, 3-nitrotyrosine (3NT) was compared with Th1 and Th2 cytokine expression. In severe asthma, high 3NT levels were associated with high IFN-γ and low IL-13 expression, both of which have been reported to increase inducible nitric oxide synthase (iNOS) in human airway epithelial cells (HAEC). We found IL-13 and IFN-γ synergistically enhanced iNOS, nitrite and 3NT, corresponding with increased H(2)O(2). Catalase inhibited while superoxide dismutase enhanced 3NT formation, supporting a critical role for H(2)O(2) but not peroxynitrite, in 3NT generation. Dual oxidase-2 (DUOX2), central to H(2)O(2) formation, was also synergistically induced by IL-13 and IFN-γ. The catalysis of nitrite and H(2)O(2) to nitrogen dioxide radical (NO(2)(•)) requires an endogenous peroxidase in this epithelial cell system. Thyroid peroxidase (TPO) was identified by microarray analysis ex vivo as a gene distinguishing HAEC of severe asthma from controls. IFN-γ induced TPO in HAEC and siRNA knockdown decreased nitrated tyrosine residues. Ex vivo, DUOX2, TPO and iNOS were higher in severe asthma and correlated with 3NT. Thus a novel iNOS-DUOX2-TPO-NO(2)(•) metabolome drives nitrative stress in HAEC and likely in severe asthma.