Cargando…
Acid-Base Balance in Uremic Rats with Vascular Calcification
BACKGROUND/AIMS: Vascular calcification (VC), a major complication in humans and animals with chronic kidney disease (CKD), is influenced by changes in acid-base balance. The purpose of this study was to describe the acid-base balance in uremic rats with VC and to correlate the parameters that defin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
S. Karger AG
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130815/ https://www.ncbi.nlm.nih.gov/pubmed/25177336 http://dx.doi.org/10.1159/000363298 |
Sumario: | BACKGROUND/AIMS: Vascular calcification (VC), a major complication in humans and animals with chronic kidney disease (CKD), is influenced by changes in acid-base balance. The purpose of this study was to describe the acid-base balance in uremic rats with VC and to correlate the parameters that define acid-base equilibrium with VC. METHODS: Twenty-two rats with CKD induced by 5/6 nephrectomy (5/6 Nx) and 10 nonuremic control rats were studied. RESULTS: The 5/6 Nx rats showed extensive VC as evidenced by a high aortic calcium (9.2 ± 1.7 mg/g of tissue) and phosphorus (20.6 ± 4.9 mg/g of tissue) content. Uremic rats had an increased pH level (7.57 ± 0.03) as a consequence of both respiratory (PaCO(2) = 28.4 ± 2.1 mm Hg) and, to a lesser degree, metabolic (base excess = 4.1 ± 1 mmol/l) derangements. A high positive correlation between both anion gap (AG) and strong ion difference (SID) with aortic calcium (AG: r = 0.604, p = 0.02; SID: r = 0.647, p = 0.01) and with aortic phosphorus (AG: r = 0.684, p = 0.007; SID: r = 0.785, p = 0.01) was detected. CONCLUSIONS: In an experimental model of uremic rats, VC showed high positive correlation with AG and SID. |
---|