Cargando…

Recruitment properties and significance of short latency reflexes in neck and eye muscles evoked by brief lateral head accelerations

Short lateral head accelerations were applied to investigate the recruitment properties of the reflexes underlying the earliest ocular and cervical electromyographic reflex responses to these disturbances. Components of both reflexes are vestibular dependent and have been termed “ocular vestibular e...

Descripción completa

Detalles Bibliográficos
Autores principales: Colebatch, James G., Dennis, Danielle L., Govender, Sendhil, Chen, Peggy, Todd, Neil P. McAngus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131169/
https://www.ncbi.nlm.nih.gov/pubmed/24838556
http://dx.doi.org/10.1007/s00221-014-3980-3
Descripción
Sumario:Short lateral head accelerations were applied to investigate the recruitment properties of the reflexes underlying the earliest ocular and cervical electromyographic reflex responses to these disturbances. Components of both reflexes are vestibular dependent and have been termed “ocular vestibular evoked myogenic potentials” and “cervical vestibular evoked myogenic potentials”, respectively. Previous investigations using a unilateral vestibular stimulus have indicated that some but not all these vestibular-dependent reflexes show a simple power law relationship to stimulus intensity. In particular, crossed otolith-ocular reflexes showed evidence of an inflection separating two types of behaviour. The present stimulus acts bilaterally, and only the earliest crossed otolith-ocular reflex, previously shown to have a strictly unilateral origin, showed evidence of an inflection. Reflex changes in ocular torsion could, in principle, correct for the changes associated with translation for an elevated eye, but our findings indicated that the responses were consistent with previous reports of tilt-type reflexes. For the neck, both vestibular and segmental (muscle spindle) reflexes were evoked and followed power law relationships, without any clear separation in sensitivity. Our findings are consistent with previous evidence of “tilt-like” reflexes evoked by lateral acceleration and suggest that the departure from a power law occurs as a consequence of a unilateral crossed pathway. For the neck, responses to transients are likely to always consist of both vestibular and non-vestibular (segmental) components. Most of the translation-evoked ocular and cervical reflexes appear to follow power law relationship to stimulus amplitude over a physiological range. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00221-014-3980-3) contains supplementary material, which is available to authorized users.