Cargando…
A Primal Analysis System of Brain Neurons Data
It is a very challenging work to classify the 86 billions of neurons in the human brain. The most important step is to get the features of these neurons. In this paper, we present a primal system to analyze and extract features from brain neurons. First, we make analysis on the original data of neur...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131436/ https://www.ncbi.nlm.nih.gov/pubmed/25152908 http://dx.doi.org/10.1155/2014/348526 |
Sumario: | It is a very challenging work to classify the 86 billions of neurons in the human brain. The most important step is to get the features of these neurons. In this paper, we present a primal system to analyze and extract features from brain neurons. First, we make analysis on the original data of neurons in which one neuron contains six parameters: room type, X, Y, Z coordinate range, total number of leaf nodes, and fuzzy volume of neurons. Then, we extract three important geometry features including rooms type, number of leaf nodes, and fuzzy volume. As application, we employ the feature database to fit the basic procedure of neuron growth. The result shows that the proposed system is effective. |
---|