Cargando…

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression

Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-...

Descripción completa

Detalles Bibliográficos
Autor principal: Choi, Won Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Applied Pharmacology 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131526/
https://www.ncbi.nlm.nih.gov/pubmed/25143809
http://dx.doi.org/10.4062/biomolther.2014.057
Descripción
Sumario:Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma (HP1γ) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates HP1γ, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-3ε. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.