Cargando…

Brief hearing loss disrupts binaural integration during two early critical periods of auditory cortex development

Early binaural experience can recalibrate central auditory circuits that support spatial hearing. However, it is not known how binaural integration matures shortly after hearing onset or whether various developmental stages are differentially impacted by disruptions of normal binaural experience. He...

Descripción completa

Detalles Bibliográficos
Autores principales: Polley, Daniel B., Thompson, John H., Guo, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131765/
https://www.ncbi.nlm.nih.gov/pubmed/24077484
http://dx.doi.org/10.1038/ncomms3547
Descripción
Sumario:Early binaural experience can recalibrate central auditory circuits that support spatial hearing. However, it is not known how binaural integration matures shortly after hearing onset or whether various developmental stages are differentially impacted by disruptions of normal binaural experience. Here we induce a brief, reversible unilateral conductive hearing loss (CHL) at several experimentally determined milestones in mouse primary auditory cortex (A1) development and characterize its effects approximately one week after normal hearing is restored. We find that experience shapes A1 binaural selectivity during two early critical periods. CHL before P16 disrupts the normal co-registration of interaural frequency tuning, whereas CHL on P16, but not before or after, disrupts interaural level difference (ILD) sensitivity contained in long-latency spikes. These data highlight an evolving plasticity in the developing auditory cortex that may relate to the etiology of amblyaudia, a binaural hearing impairment associated with bouts of otitis media during human infancy.