Cargando…
Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk
The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132047/ https://www.ncbi.nlm.nih.gov/pubmed/25119288 http://dx.doi.org/10.1371/journal.pone.0104832 |
_version_ | 1782330558613815296 |
---|---|
author | Patil, Sandeep P. Xiao, Senbo Gkagkas, Konstantinos Markert, Bernd Gräter, Frauke |
author_facet | Patil, Sandeep P. Xiao, Senbo Gkagkas, Konstantinos Markert, Bernd Gräter, Frauke |
author_sort | Patil, Sandeep P. |
collection | PubMed |
description | The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 10(2) Ns/m(2) by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading. |
format | Online Article Text |
id | pubmed-4132047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41320472014-08-19 Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk Patil, Sandeep P. Xiao, Senbo Gkagkas, Konstantinos Markert, Bernd Gräter, Frauke PLoS One Research Article The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 10(2) Ns/m(2) by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading. Public Library of Science 2014-08-13 /pmc/articles/PMC4132047/ /pubmed/25119288 http://dx.doi.org/10.1371/journal.pone.0104832 Text en © 2014 Patil et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Patil, Sandeep P. Xiao, Senbo Gkagkas, Konstantinos Markert, Bernd Gräter, Frauke Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk |
title | Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk |
title_full | Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk |
title_fullStr | Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk |
title_full_unstemmed | Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk |
title_short | Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk |
title_sort | viscous friction between crystalline and amorphous phase of dragline silk |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132047/ https://www.ncbi.nlm.nih.gov/pubmed/25119288 http://dx.doi.org/10.1371/journal.pone.0104832 |
work_keys_str_mv | AT patilsandeepp viscousfrictionbetweencrystallineandamorphousphaseofdraglinesilk AT xiaosenbo viscousfrictionbetweencrystallineandamorphousphaseofdraglinesilk AT gkagkaskonstantinos viscousfrictionbetweencrystallineandamorphousphaseofdraglinesilk AT markertbernd viscousfrictionbetweencrystallineandamorphousphaseofdraglinesilk AT graterfrauke viscousfrictionbetweencrystallineandamorphousphaseofdraglinesilk |