Cargando…

In Silico Analysis of Missense Mutations in LPAR6 Reveals Abnormal Phospholipid Signaling Pathway Leading to Hypotrichosis

Autosomal recessive hypotrichosis is a rare genetic irreversible hair loss disorder characterized by sparse scalp hair, sparse to absent eyebrows and eyelashes, and sparse axillary and body hair. The study, presented here, established genetic linkage in four families showing similar phenotypes to ly...

Descripción completa

Detalles Bibliográficos
Autores principales: Raza, Syed Irfan, Muhammad, Dost, Jan, Abid, Ali, Raja Hussain, Hassan, Mubashir, Ahmad, Wasim, Rashid, Sajid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132050/
https://www.ncbi.nlm.nih.gov/pubmed/25119526
http://dx.doi.org/10.1371/journal.pone.0104756
Descripción
Sumario:Autosomal recessive hypotrichosis is a rare genetic irreversible hair loss disorder characterized by sparse scalp hair, sparse to absent eyebrows and eyelashes, and sparse axillary and body hair. The study, presented here, established genetic linkage in four families showing similar phenotypes to lysophosphatidic acid receptor 6 (LPAR6) gene on chromosome 13q14.11-q21.32. Subsequently, sequence analysis of the gene revealed two previously reported missense mutations including p.D63V in affected members of one and p.I188F in three other families. Molecular modeling and docking analysis was performed to investigate binding of a ligand oleoyl-L-alpha-lysophosphatidic acid (LPA) to modeled protein structures of normal and mutated (D63V, G146R, I188F, N248Y, S3T, L277P) LPAR6 receptors. The mutant receptors showed a complete shift in orientation of LPA at the binding site. In addition, hydropathy analysis revealed a significant change in the membrane spanning topology of LPAR6 helical segments. The present study further substantiated involvement of LPAR6-LPA signaling in the pathogenesis of hypotrichosis/woolly hair and provided additional insight into the molecular mechanism of hair development.