Cargando…
Validation of Six Genetic Determinants of Susceptibility to Estrogen-Induced Mammary Cancer in the Rat and Assessment of Their Relevance to Breast Cancer Risk in Humans
When treated with 17β-estradiol, female ACI rats (Rattus norvegicus) rapidly develop mammary cancers that share multiple phenotypes with luminal breast cancers. Seven distinct quantitative trait loci that harbor genetic determinants of susceptibility to 17β-estradiol−induced mammary cancer have been...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132170/ https://www.ncbi.nlm.nih.gov/pubmed/24875630 http://dx.doi.org/10.1534/g3.114.011163 |
Sumario: | When treated with 17β-estradiol, female ACI rats (Rattus norvegicus) rapidly develop mammary cancers that share multiple phenotypes with luminal breast cancers. Seven distinct quantitative trait loci that harbor genetic determinants of susceptibility to 17β-estradiol−induced mammary cancer have been mapped in reciprocal intercrosses between susceptible ACI rats and resistant Brown Norway (BN) rats. A panel of unique congenic rat strains has now been generated and characterized to confirm the existence of these quantitative trait loci, designated Emca3 through Emca9, and to quantify their individual effects on susceptibility to 17β-estradiol−induced mammary cancer. Each congenic strain carries BN alleles spanning an individual Emca locus, introgressed onto the ACI genetic background. Data presented herein indicate that BN alleles at Emca3, Emca4, Emca5, Emca6, and Emca9 reduce susceptibility to 17β-estradiol−induced mammary cancer, whereas BN alleles at Emca7 increase susceptibility, thereby confirming the previous interval mapping data. All of these Emca loci are orthologous to regions of the human genome that have been demonstrated in genome-wide association studies to harbor genetic variants that influence breast cancer risk. Moreover, four of the Emca loci are orthologous to loci in humans that have been associated with mammographic breast density, a biomarker of breast cancer risk. This study further establishes the relevance of the ACI and derived congenic rat models of 17β-estradiol−induced mammary cancer for defining the genetic bases of breast cancer susceptibility and elucidating the mechanisms through which 17β-estradiol contributes to breast cancer development. |
---|