Cargando…

Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP)

BACKGROUND: The first documented case of Middle East Respiratory Syndrome coronavirus (MERS-CoV) occurred in 2012, and outbreaks have continued ever since, mainly in Saudi Arabia. MERS-CoV is primarily diagnosed using a real-time RT-PCR assay, with at least two different genomic targets required for...

Descripción completa

Detalles Bibliográficos
Autores principales: Shirato, Kazuya, Yano, Takuya, Senba, Syouhei, Akachi, Shigehiro, Kobayashi, Takashi, Nishinaka, Takamichi, Notomi, Tsugunori, Matsuyama, Shutoku
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132226/
https://www.ncbi.nlm.nih.gov/pubmed/25103205
http://dx.doi.org/10.1186/1743-422X-11-139
Descripción
Sumario:BACKGROUND: The first documented case of Middle East Respiratory Syndrome coronavirus (MERS-CoV) occurred in 2012, and outbreaks have continued ever since, mainly in Saudi Arabia. MERS-CoV is primarily diagnosed using a real-time RT-PCR assay, with at least two different genomic targets required for a positive diagnosis according to the case definition of The World Health Organization (WHO) as of 3 July 2013. Therefore, it is urgently necessary to develop as many specific genetic diagnostic methods as possible to allow stable diagnosis of MERS-CoV infections. METHODS: Reverse transcription-loop-mediated isothermal amplification (RT-LAMP) is a genetic diagnostic method used widely for the detection of viral pathogens, which requires only a single temperature for amplification, and can be completed in less than 1 h. This study developed a novel RT-LAMP assay for detecting MERS-CoV using primer sets targeting a conserved nucleocapsid protein region. RESULTS: The RT-LAMP assay was capable of detecting as few as 3.4 copies of MERS-CoV RNA, and was highly specific, with no cross-reaction to other respiratory viruses. Pilot experiments to detect MERS-CoV from medium containing pharyngeal swabs inoculated with pre-titrated viruses were also performed. The RT-LAMP assay exhibited sensitivity similar to that of MERS-CoV real-time RT-PCR. CONCLUSIONS: These results suggest that the RT-LAMP assay described here is a useful tool for the diagnosis and epidemiologic surveillance of human MERS-CoV infections.