Cargando…
A characterization of Chover-type law of iterated logarithm
ABSTRACT: Let 0 < α ≤ 2 and − ∞ <β <∞. Let {X(n);n ≥ 1} be a sequence of independent copies of a real-valued random variable X and set S(n) = X(1)+⋯+X(n), n ≥ 1. We say X satisfies the (α,β)-Chover-type law of the iterated logarithm (and write X∈CTLIL(α,β)) if [Image: see text] almost surel...
Autores principales: | Li, Deli, Chen, Pingyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132459/ https://www.ncbi.nlm.nih.gov/pubmed/25133089 http://dx.doi.org/10.1186/2193-1801-3-386 |
Ejemplares similares
-
The law of the iterated logarithm for LNQD sequences
por: Zhang, Yong
Publicado: (2018) -
A law of iterated logarithm for the subfractional Brownian motion and an application
por: Qi, Hongsheng, et al.
Publicado: (2018) -
Boundary crossing of brownian motion: its relation to the law of the iterated logarithm and to sequential analysis
por: Lerche, Hans Rudolf
Publicado: (1986) -
Zeroth Law investigation on the logarithmic thermostat
por: Patra, Puneet Kumar, et al.
Publicado: (2018) -
The Law of the Iterated Logarithm for Linear Processes Generated by a Sequence of Stationary Independent Random Variables under the Sub-Linear Expectation
por: Liu, Wei, et al.
Publicado: (2021)