Cargando…

The RNA-mediated, asymmetric ring regulatory mechanism of the transcription termination Rho helicase decrypted by time-resolved Nucleotide Analog Interference Probing (trNAIP)

Rho is a ring-shaped, ATP-dependent RNA helicase/translocase that dissociates transcriptional complexes in bacteria. How RNA recognition is coupled to ATP hydrolysis and translocation in Rho is unclear. Here, we develop and use a new combinatorial approach, called time-resolved Nucleotide Analog Int...

Descripción completa

Detalles Bibliográficos
Autores principales: Soares, Emilie, Schwartz, Annie, Nollmann, Marcello, Margeat, Emmanuel, Boudvillain, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132721/
https://www.ncbi.nlm.nih.gov/pubmed/25016524
http://dx.doi.org/10.1093/nar/gku595
Descripción
Sumario:Rho is a ring-shaped, ATP-dependent RNA helicase/translocase that dissociates transcriptional complexes in bacteria. How RNA recognition is coupled to ATP hydrolysis and translocation in Rho is unclear. Here, we develop and use a new combinatorial approach, called time-resolved Nucleotide Analog Interference Probing (trNAIP), to unmask RNA molecular determinants of catalytic Rho function. We identify a regulatory step in the translocation cycle involving recruitment of the 2′-hydroxyl group of the incoming 3′-RNA nucleotide by a Rho subunit. We propose that this step arises from the intrinsic weakness of one of the subunit interfaces caused by asymmetric, split-ring arrangement of primary RNA tethers around the Rho hexamer. Translocation is at highest stake every seventh nucleotide when the weak interface engages the incoming 3′-RNA nucleotide or breaks, depending on RNA threading constraints in the Rho pore. This substrate-governed, ‘test to run’ iterative mechanism offers a new perspective on how a ring-translocase may function or be regulated. It also illustrates the interest and versatility of the new trNAIP methodology to unveil the molecular mechanisms of complex RNA-based systems.