Cargando…

Inferring Microscopic Kinetic Rates from Stationary State Distributions

[Image: see text] We present a principled approach for estimating the matrix of microscopic transition probabilities among states of a Markov process, given only its stationary state population distribution and a single average global kinetic observable. We adapt Maximum Caliber, a variational princ...

Descripción completa

Detalles Bibliográficos
Autores principales: Dixit, Purushottam D., Dill, Ken A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132853/
https://www.ncbi.nlm.nih.gov/pubmed/25136269
http://dx.doi.org/10.1021/ct5001389
Descripción
Sumario:[Image: see text] We present a principled approach for estimating the matrix of microscopic transition probabilities among states of a Markov process, given only its stationary state population distribution and a single average global kinetic observable. We adapt Maximum Caliber, a variational principle in which the path entropy is maximized over the distribution of all possible trajectories, subject to basic kinetic constraints and some average dynamical observables. We illustrate the method by computing the solvation dynamics of water molecules from molecular dynamics trajectories.