Cargando…
Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications
Conventional optical trapping using a tightly focused beam is not suitable for trapping particles that are smaller than the diffraction limit because of the increasing need of the incident laser power that could produce permanent thermal damages. One of the current solutions to this problem is to in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132981/ https://www.ncbi.nlm.nih.gov/pubmed/25136478 http://dx.doi.org/10.1364/BOE.5.002471 |
_version_ | 1782330694659211264 |
---|---|
author | Kim, Jung-Dae Lee, Yong-Gu |
author_facet | Kim, Jung-Dae Lee, Yong-Gu |
author_sort | Kim, Jung-Dae |
collection | PubMed |
description | Conventional optical trapping using a tightly focused beam is not suitable for trapping particles that are smaller than the diffraction limit because of the increasing need of the incident laser power that could produce permanent thermal damages. One of the current solutions to this problem is to intensify the local field enhancement by using nanoplasmonic structures without increasing the laser power. Nanoplasmonic tweezers have been used for various small molecules but there is no known report of trapping a single DNA molecule. In this paper, we present the trapping of a single DNA molecule using a nanohole created on a gold substrate. Furthermore, we show that the DNA of different lengths can be differentiated through the measurement of scattering signals leading to possible new DNA sensor applications. |
format | Online Article Text |
id | pubmed-4132981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Optical Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-41329812014-08-18 Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications Kim, Jung-Dae Lee, Yong-Gu Biomed Opt Express Article Conventional optical trapping using a tightly focused beam is not suitable for trapping particles that are smaller than the diffraction limit because of the increasing need of the incident laser power that could produce permanent thermal damages. One of the current solutions to this problem is to intensify the local field enhancement by using nanoplasmonic structures without increasing the laser power. Nanoplasmonic tweezers have been used for various small molecules but there is no known report of trapping a single DNA molecule. In this paper, we present the trapping of a single DNA molecule using a nanohole created on a gold substrate. Furthermore, we show that the DNA of different lengths can be differentiated through the measurement of scattering signals leading to possible new DNA sensor applications. Optical Society of America 2014-07-03 /pmc/articles/PMC4132981/ /pubmed/25136478 http://dx.doi.org/10.1364/BOE.5.002471 Text en © 2014 Optical Society of America author-open |
spellingShingle | Article Kim, Jung-Dae Lee, Yong-Gu Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications |
title | Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications |
title_full | Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications |
title_fullStr | Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications |
title_full_unstemmed | Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications |
title_short | Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications |
title_sort | trapping of a single dna molecule using nanoplasmonic structures for biosensor applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132981/ https://www.ncbi.nlm.nih.gov/pubmed/25136478 http://dx.doi.org/10.1364/BOE.5.002471 |
work_keys_str_mv | AT kimjungdae trappingofasinglednamoleculeusingnanoplasmonicstructuresforbiosensorapplications AT leeyonggu trappingofasinglednamoleculeusingnanoplasmonicstructuresforbiosensorapplications |