Cargando…
Optical design and evaluation of a 4 mm cost-effective ultra-high-definition arthroscope
High definition and magnification rigid endoscope plays an important role in modern minimally invasive medical surgery and diagnosis. In this paper, we present the design and evaluation methods of a high definition rigid endoscope, specifically an arthroscope, with a large depth of field (DOF). The...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132999/ https://www.ncbi.nlm.nih.gov/pubmed/25136495 http://dx.doi.org/10.1364/BOE.5.002697 |
Sumario: | High definition and magnification rigid endoscope plays an important role in modern minimally invasive medical surgery and diagnosis. In this paper, we present the design and evaluation methods of a high definition rigid endoscope, specifically an arthroscope, with a large depth of field (DOF). The incident heights and exit angles of the sampled rays on the relay lens are controlled during the optimization process to ensure an effective field view (70°) and a normal ray path within the limited lens diameter of 2.7 mm. The lens is set up as a multi-configuration system with two extreme and one middle object distances to cover a large DOF. As a result, an entrance pupil of 0.3 mm is achieved for the first time, to bring the theoretical resolution to 23.1 lps/mm in the object space at a working distance of 20 mm, with the wavelength of 0.532 um. The modulation transfer function (MTF) curves approach diffraction limit, and the values are all higher than 0.3 at 160 line pairs/mm (lps/mm) in the image space. Meanwhile, stray light caused by total internal reflection on the inner wall of the rod lenses and the objective lens is eliminated. The measured resolution in the object space at a 20 mm working distance is 22.3 lps/mm, and test results show that other performance characteristics also fulfill design requirements. The relay lenses are designed with only one type of the spacer and two types of lenses to greatly reduce the fabrication and assembly cost. The design method has important research and application values for lens systems used in modern minimally invasive medical surgery and industrial non-destructive testing area. |
---|