Cargando…
Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography
Myofiber organization in cardiac muscle plays an important role in achieving normal mechanical and electrical heart functions. An imaging tool that can reveal microstructural details of myofiber organization is valuable for both basic research and clinical applications. A high-resolution optical pol...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133011/ https://www.ncbi.nlm.nih.gov/pubmed/25136507 http://dx.doi.org/10.1364/BOE.5.002843 |
_version_ | 1782330701511655424 |
---|---|
author | Wang, Y. Zhang, K. Wasala, N. B. Yao, X. Duan, D. Yao, G. |
author_facet | Wang, Y. Zhang, K. Wasala, N. B. Yao, X. Duan, D. Yao, G. |
author_sort | Wang, Y. |
collection | PubMed |
description | Myofiber organization in cardiac muscle plays an important role in achieving normal mechanical and electrical heart functions. An imaging tool that can reveal microstructural details of myofiber organization is valuable for both basic research and clinical applications. A high-resolution optical polarization tractography (OPT) was recently developed based on Jones matrix optical coherence tomography (JMOCT). In this study, we validated the accuracy of using OPT for measuring depth-resolved fiber orientation in fresh heart samples by comparing directly with histology images. Systematic image processing algorithms were developed to register OPT with histology images. The pixel-wise differences between the two tractographic results were analyzed in details. The results indicate that OPT can accurately image depth-resolved fiber orientation in fresh heart tissues and reveal microstructural details at the histological level. |
format | Online Article Text |
id | pubmed-4133011 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Optical Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-41330112014-08-18 Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography Wang, Y. Zhang, K. Wasala, N. B. Yao, X. Duan, D. Yao, G. Biomed Opt Express Article Myofiber organization in cardiac muscle plays an important role in achieving normal mechanical and electrical heart functions. An imaging tool that can reveal microstructural details of myofiber organization is valuable for both basic research and clinical applications. A high-resolution optical polarization tractography (OPT) was recently developed based on Jones matrix optical coherence tomography (JMOCT). In this study, we validated the accuracy of using OPT for measuring depth-resolved fiber orientation in fresh heart samples by comparing directly with histology images. Systematic image processing algorithms were developed to register OPT with histology images. The pixel-wise differences between the two tractographic results were analyzed in details. The results indicate that OPT can accurately image depth-resolved fiber orientation in fresh heart tissues and reveal microstructural details at the histological level. Optical Society of America 2014-07-29 /pmc/articles/PMC4133011/ /pubmed/25136507 http://dx.doi.org/10.1364/BOE.5.002843 Text en © 2014 Optical Society of America author-open |
spellingShingle | Article Wang, Y. Zhang, K. Wasala, N. B. Yao, X. Duan, D. Yao, G. Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography |
title | Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography |
title_full | Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography |
title_fullStr | Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography |
title_full_unstemmed | Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography |
title_short | Histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography |
title_sort | histology validation of mapping depth-resolved cardiac fiber orientation in fresh mouse heart using optical polarization tractography |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133011/ https://www.ncbi.nlm.nih.gov/pubmed/25136507 http://dx.doi.org/10.1364/BOE.5.002843 |
work_keys_str_mv | AT wangy histologyvalidationofmappingdepthresolvedcardiacfiberorientationinfreshmouseheartusingopticalpolarizationtractography AT zhangk histologyvalidationofmappingdepthresolvedcardiacfiberorientationinfreshmouseheartusingopticalpolarizationtractography AT wasalanb histologyvalidationofmappingdepthresolvedcardiacfiberorientationinfreshmouseheartusingopticalpolarizationtractography AT yaox histologyvalidationofmappingdepthresolvedcardiacfiberorientationinfreshmouseheartusingopticalpolarizationtractography AT duand histologyvalidationofmappingdepthresolvedcardiacfiberorientationinfreshmouseheartusingopticalpolarizationtractography AT yaog histologyvalidationofmappingdepthresolvedcardiacfiberorientationinfreshmouseheartusingopticalpolarizationtractography |