Cargando…

Phosphorylation of a Central Clock Transcription Factor Is Required for Thermal but Not Photic Entrainment

Transcriptional/translational feedback loops drive daily cycles of expression in clock genes and clock-controlled genes, which ultimately underlie many of the overt circadian rhythms manifested by organisms. Moreover, phosphorylation of clock proteins plays crucial roles in the temporal regulation o...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Euna, Jeong, Eun Hee, Jeong, Hyun-Jeong, Yildirim, Evrim, Vanselow, Jens T., Ng, Fanny, Liu, Yixiao, Mahesh, Guruswamy, Kramer, Achim, Hardin, Paul E., Edery, Isaac, Kim, Eun Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133166/
https://www.ncbi.nlm.nih.gov/pubmed/25121504
http://dx.doi.org/10.1371/journal.pgen.1004545
Descripción
Sumario:Transcriptional/translational feedback loops drive daily cycles of expression in clock genes and clock-controlled genes, which ultimately underlie many of the overt circadian rhythms manifested by organisms. Moreover, phosphorylation of clock proteins plays crucial roles in the temporal regulation of clock protein activity, stability and subcellular localization. dCLOCK (dCLK), the master transcription factor driving cyclical gene expression and the rate-limiting component in the Drosophila circadian clock, undergoes daily changes in phosphorylation. However, the physiological role of dCLK phosphorylation is not clear. Using a Drosophila tissue culture system, we identified multiple phosphorylation sites on dCLK. Expression of a mutated version of dCLK where all the mapped phospho-sites were switched to alanine (dCLK-15A) rescues the arrythmicity of Clk (out) flies, yet with an approximately 1.5 hr shorter period. The dCLK-15A protein attains substantially higher levels in flies compared to the control situation, and also appears to have enhanced transcriptional activity, consistent with the observed higher peak values and amplitudes in the mRNA rhythms of several core clock genes. Surprisingly, the clock-controlled daily activity rhythm in dCLK-15A expressing flies does not synchronize properly to daily temperature cycles, although there is no defect in aligning to light/dark cycles. Our findings suggest a novel role for clock protein phosphorylation in governing the relative strengths of entraining modalities by adjusting the dynamics of circadian gene expression.