Cargando…

Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria

[Image: see text] The mechanical properties of cytoskeletal networks are intimately involved in determining how forces and cellular processes are generated, directed, and transmitted in living cells. However, determining the mechanical properties of subcellular molecular complexes in vivo has proven...

Descripción completa

Detalles Bibliográficos
Autores principales: Körnig, André, Dong, Jiajia, Bennet, Mathieu, Widdrat, Marc, Andert, Janet, Müller, Frank D., Schüler, Dirk, Klumpp, Stefan, Faivre, Damien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133184/
https://www.ncbi.nlm.nih.gov/pubmed/25003507
http://dx.doi.org/10.1021/nl5017267
_version_ 1782330724774313984
author Körnig, André
Dong, Jiajia
Bennet, Mathieu
Widdrat, Marc
Andert, Janet
Müller, Frank D.
Schüler, Dirk
Klumpp, Stefan
Faivre, Damien
author_facet Körnig, André
Dong, Jiajia
Bennet, Mathieu
Widdrat, Marc
Andert, Janet
Müller, Frank D.
Schüler, Dirk
Klumpp, Stefan
Faivre, Damien
author_sort Körnig, André
collection PubMed
description [Image: see text] The mechanical properties of cytoskeletal networks are intimately involved in determining how forces and cellular processes are generated, directed, and transmitted in living cells. However, determining the mechanical properties of subcellular molecular complexes in vivo has proven to be difficult. Here, we combine in vivo measurements by optical microscopy, X-ray diffraction, and transmission electron microscopy with theoretical modeling to decipher the mechanical properties of the magnetosome chain system encountered in magnetotactic bacteria. We exploit the magnetic properties of the endogenous intracellular nanoparticles to apply a force on the filament-connector pair involved in the backbone formation and stabilization. We show that the magnetosome chain can be broken by the application of external field strength higher than 30 mT and suggest that this originates from the rupture of the magnetosome connector MamJ. In addition, we calculate that the biological determinants can withstand in vivo a force of 25 pN. This quantitative understanding provides insights for the design of functional materials such as actuators and sensors using cellular components.
format Online
Article
Text
id pubmed-4133184
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-41331842014-08-15 Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria Körnig, André Dong, Jiajia Bennet, Mathieu Widdrat, Marc Andert, Janet Müller, Frank D. Schüler, Dirk Klumpp, Stefan Faivre, Damien Nano Lett [Image: see text] The mechanical properties of cytoskeletal networks are intimately involved in determining how forces and cellular processes are generated, directed, and transmitted in living cells. However, determining the mechanical properties of subcellular molecular complexes in vivo has proven to be difficult. Here, we combine in vivo measurements by optical microscopy, X-ray diffraction, and transmission electron microscopy with theoretical modeling to decipher the mechanical properties of the magnetosome chain system encountered in magnetotactic bacteria. We exploit the magnetic properties of the endogenous intracellular nanoparticles to apply a force on the filament-connector pair involved in the backbone formation and stabilization. We show that the magnetosome chain can be broken by the application of external field strength higher than 30 mT and suggest that this originates from the rupture of the magnetosome connector MamJ. In addition, we calculate that the biological determinants can withstand in vivo a force of 25 pN. This quantitative understanding provides insights for the design of functional materials such as actuators and sensors using cellular components. American Chemical Society 2014-07-08 2014-08-13 /pmc/articles/PMC4133184/ /pubmed/25003507 http://dx.doi.org/10.1021/nl5017267 Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
spellingShingle Körnig, André
Dong, Jiajia
Bennet, Mathieu
Widdrat, Marc
Andert, Janet
Müller, Frank D.
Schüler, Dirk
Klumpp, Stefan
Faivre, Damien
Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria
title Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria
title_full Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria
title_fullStr Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria
title_full_unstemmed Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria
title_short Probing the Mechanical Properties of Magnetosome Chains in Living Magnetotactic Bacteria
title_sort probing the mechanical properties of magnetosome chains in living magnetotactic bacteria
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133184/
https://www.ncbi.nlm.nih.gov/pubmed/25003507
http://dx.doi.org/10.1021/nl5017267
work_keys_str_mv AT kornigandre probingthemechanicalpropertiesofmagnetosomechainsinlivingmagnetotacticbacteria
AT dongjiajia probingthemechanicalpropertiesofmagnetosomechainsinlivingmagnetotacticbacteria
AT bennetmathieu probingthemechanicalpropertiesofmagnetosomechainsinlivingmagnetotacticbacteria
AT widdratmarc probingthemechanicalpropertiesofmagnetosomechainsinlivingmagnetotacticbacteria
AT andertjanet probingthemechanicalpropertiesofmagnetosomechainsinlivingmagnetotacticbacteria
AT mullerfrankd probingthemechanicalpropertiesofmagnetosomechainsinlivingmagnetotacticbacteria
AT schulerdirk probingthemechanicalpropertiesofmagnetosomechainsinlivingmagnetotacticbacteria
AT klumppstefan probingthemechanicalpropertiesofmagnetosomechainsinlivingmagnetotacticbacteria
AT faivredamien probingthemechanicalpropertiesofmagnetosomechainsinlivingmagnetotacticbacteria