Cargando…
DNA torsion as a feedback mediator of transcription and chromatin dynamics
The double helical structure of DNA lends itself to topological constraints. Many DNA-based processes alter the topological state of DNA, generating torsional stress, which is efficiently relieved by topoisomerases. Maintaining this topological balance is crucial to cell survival, as excessive torsi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133216/ https://www.ncbi.nlm.nih.gov/pubmed/24819949 http://dx.doi.org/10.4161/nucl.29086 |
Sumario: | The double helical structure of DNA lends itself to topological constraints. Many DNA-based processes alter the topological state of DNA, generating torsional stress, which is efficiently relieved by topoisomerases. Maintaining this topological balance is crucial to cell survival, as excessive torsional strain risks DNA damage. Here, we review the mechanisms that generate and modulate DNA torsion within the cell. In particular, we discuss how transcription-generated torsional stress affects Pol II kinetics and chromatin dynamics, highlighting an emerging role of DNA torsion as a feedback mediator of torsion-generating processes. |
---|