Cargando…
Cadherin Cytoplasmic Domains Inhibit the Cell Surface Localization of Endogenous E-Cadherin, Blocking Desmosome and Tight Junction Formation and Inducing Cell Dissociation
The downregulation of E-cadherin function has fundamental consequences with respect to cancer progression, and occurs as part of the epithelial–mesenchymal transition (EMT). In this study, we show that the expression of the Discosoma sp. red fluorescent protein (DsRed)-tagged cadherin cytoplasmic do...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133371/ https://www.ncbi.nlm.nih.gov/pubmed/25121615 http://dx.doi.org/10.1371/journal.pone.0105313 |
_version_ | 1782330750809407488 |
---|---|
author | Ozawa, Masayuki Kobayashi, Wakako |
author_facet | Ozawa, Masayuki Kobayashi, Wakako |
author_sort | Ozawa, Masayuki |
collection | PubMed |
description | The downregulation of E-cadherin function has fundamental consequences with respect to cancer progression, and occurs as part of the epithelial–mesenchymal transition (EMT). In this study, we show that the expression of the Discosoma sp. red fluorescent protein (DsRed)-tagged cadherin cytoplasmic domain in cells inhibited the cell surface localization of endogenous E-cadherin, leading to morphological changes, the inhibition of junctional assembly and cell dissociation. These changes were associated with increased cell migration, but were not accompanied by the down-regulation of epithelial markers and up-regulation of mesenchymal markers. Thus, these changes cannot be classified as EMT. The cadherin cytoplasmic domain interacted with β-catenin or plakoglobin, reducing the levels of β-catenin or plakoglobin associated with E-cadherin, and raising the possibility that β-catenin and plakoglobin sequestration by these constructs induced E-cadherin intracellular localization. Accordingly, a cytoplasmic domain construct bearing mutations that weakened the interactions with β-catenin or plakoglobin did not impair junction formation and adhesion, indicating that the interaction with β-catenin or plakoglobin was essential to the potential of the constructs. E-cadherin–α-catenin chimeras that did not require β-catenin or plakoglobin for their cell surface transport restored cell–cell adhesion and junction formation. |
format | Online Article Text |
id | pubmed-4133371 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41333712014-08-19 Cadherin Cytoplasmic Domains Inhibit the Cell Surface Localization of Endogenous E-Cadherin, Blocking Desmosome and Tight Junction Formation and Inducing Cell Dissociation Ozawa, Masayuki Kobayashi, Wakako PLoS One Research Article The downregulation of E-cadherin function has fundamental consequences with respect to cancer progression, and occurs as part of the epithelial–mesenchymal transition (EMT). In this study, we show that the expression of the Discosoma sp. red fluorescent protein (DsRed)-tagged cadherin cytoplasmic domain in cells inhibited the cell surface localization of endogenous E-cadherin, leading to morphological changes, the inhibition of junctional assembly and cell dissociation. These changes were associated with increased cell migration, but were not accompanied by the down-regulation of epithelial markers and up-regulation of mesenchymal markers. Thus, these changes cannot be classified as EMT. The cadherin cytoplasmic domain interacted with β-catenin or plakoglobin, reducing the levels of β-catenin or plakoglobin associated with E-cadherin, and raising the possibility that β-catenin and plakoglobin sequestration by these constructs induced E-cadherin intracellular localization. Accordingly, a cytoplasmic domain construct bearing mutations that weakened the interactions with β-catenin or plakoglobin did not impair junction formation and adhesion, indicating that the interaction with β-catenin or plakoglobin was essential to the potential of the constructs. E-cadherin–α-catenin chimeras that did not require β-catenin or plakoglobin for their cell surface transport restored cell–cell adhesion and junction formation. Public Library of Science 2014-08-14 /pmc/articles/PMC4133371/ /pubmed/25121615 http://dx.doi.org/10.1371/journal.pone.0105313 Text en © 2014 Ozawa, Kobayashi http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ozawa, Masayuki Kobayashi, Wakako Cadherin Cytoplasmic Domains Inhibit the Cell Surface Localization of Endogenous E-Cadherin, Blocking Desmosome and Tight Junction Formation and Inducing Cell Dissociation |
title | Cadherin Cytoplasmic Domains Inhibit the Cell Surface Localization of Endogenous E-Cadherin, Blocking Desmosome and Tight Junction Formation and Inducing Cell Dissociation |
title_full | Cadherin Cytoplasmic Domains Inhibit the Cell Surface Localization of Endogenous E-Cadherin, Blocking Desmosome and Tight Junction Formation and Inducing Cell Dissociation |
title_fullStr | Cadherin Cytoplasmic Domains Inhibit the Cell Surface Localization of Endogenous E-Cadherin, Blocking Desmosome and Tight Junction Formation and Inducing Cell Dissociation |
title_full_unstemmed | Cadherin Cytoplasmic Domains Inhibit the Cell Surface Localization of Endogenous E-Cadherin, Blocking Desmosome and Tight Junction Formation and Inducing Cell Dissociation |
title_short | Cadherin Cytoplasmic Domains Inhibit the Cell Surface Localization of Endogenous E-Cadherin, Blocking Desmosome and Tight Junction Formation and Inducing Cell Dissociation |
title_sort | cadherin cytoplasmic domains inhibit the cell surface localization of endogenous e-cadherin, blocking desmosome and tight junction formation and inducing cell dissociation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133371/ https://www.ncbi.nlm.nih.gov/pubmed/25121615 http://dx.doi.org/10.1371/journal.pone.0105313 |
work_keys_str_mv | AT ozawamasayuki cadherincytoplasmicdomainsinhibitthecellsurfacelocalizationofendogenousecadherinblockingdesmosomeandtightjunctionformationandinducingcelldissociation AT kobayashiwakako cadherincytoplasmicdomainsinhibitthecellsurfacelocalizationofendogenousecadherinblockingdesmosomeandtightjunctionformationandinducingcelldissociation |