Cargando…
Exquisite Sequence Selectivity with Small Conditional RNAs
[Image: see text] Dynamic RNA nanotechnology based on programmable hybridization cascades with small conditional RNAs (scRNAs) offers a promising conceptual framework for engineering programmable conditional regulation in vivo. While single-base substitution (SBS) somatic mutations and single-nucleo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134187/ https://www.ncbi.nlm.nih.gov/pubmed/24979041 http://dx.doi.org/10.1021/nl501593r |
Sumario: | [Image: see text] Dynamic RNA nanotechnology based on programmable hybridization cascades with small conditional RNAs (scRNAs) offers a promising conceptual framework for engineering programmable conditional regulation in vivo. While single-base substitution (SBS) somatic mutations and single-nucleotide polymorphisms (SNPs) are important markers and drivers of disease, it is unclear whether synthetic RNA signal transducers are sufficiently programmable to accept a cognate RNA input while rejecting single-nucleotide sequence variants. Here, we explore the limits of scRNA programmability, demonstrating isothermal, enzyme-free genotyping of RNA SBS cancer markers and SNPs using scRNAs that execute a conditional hybridization cascade in the presence of a cognate RNA target. Kinetic discrimination can be engineered on a time scale of choice from minutes to days. To discriminate even the most challenging single-nucleotide sequence variants, including those that lead to nearly isoenergetic RNA wobble pairs, competitive inhibition with an unstructured scavenger strand or with other scRNAs provides a simple and effective principle for achieving exquisite sequence selectivity. |
---|