Cargando…

Graph-Based Inter-Subject Pattern Analysis of fMRI Data

In brain imaging, solving learning problems in multi-subjects settings is difficult because of the differences that exist across individuals. Here we introduce a novel classification framework based on group-invariant graphical representations, allowing to overcome the inter-subject variability pres...

Descripción completa

Detalles Bibliográficos
Autores principales: Takerkart, Sylvain, Auzias, Guillaume, Thirion, Bertrand, Ralaivola, Liva
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134217/
https://www.ncbi.nlm.nih.gov/pubmed/25127129
http://dx.doi.org/10.1371/journal.pone.0104586
Descripción
Sumario:In brain imaging, solving learning problems in multi-subjects settings is difficult because of the differences that exist across individuals. Here we introduce a novel classification framework based on group-invariant graphical representations, allowing to overcome the inter-subject variability present in functional magnetic resonance imaging (fMRI) data and to perform multivariate pattern analysis across subjects. Our contribution is twofold: first, we propose an unsupervised representation learning scheme that encodes all relevant characteristics of distributed fMRI patterns into attributed graphs; second, we introduce a custom-designed graph kernel that exploits all these characteristics and makes it possible to perform supervised learning (here, classification) directly in graph space. The well-foundedness of our technique and the robustness of the performance to the parameter setting are demonstrated through inter-subject classification experiments conducted on both artificial data and a real fMRI experiment aimed at characterizing local cortical representations. Our results show that our framework produces accurate inter-subject predictions and that it outperforms a wide range of state-of-the-art vector- and parcel-based classification methods. Moreover, the genericity of our method makes it is easily adaptable to a wide range of potential applications. The dataset used in this study and an implementation of our framework are available at http://dx.doi.org/10.6084/m9.figshare.1086317.