Cargando…
Loss of Intralipid®- but Not Sevoflurane-Mediated Cardioprotection in Early Type-2 Diabetic Hearts of Fructose-Fed Rats: Importance of ROS Signaling
BACKGROUND: Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury. METHODS: Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134246/ https://www.ncbi.nlm.nih.gov/pubmed/25127027 http://dx.doi.org/10.1371/journal.pone.0104971 |
Sumario: | BACKGROUND: Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury. METHODS: Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose were exposed to 15 min of ischemia and 30 min of reperfusion. Intralipid® (1%) was administered at the onset of reperfusion. Peri-ischemic sevoflurane (2 vol.-%) served as alternative protection strategy. Recovery of left ventricular function was recorded and the activation of Akt and ERK 1/2 was monitored. Mitochondrial function was assessed by high-resolution respirometry and mitochondrial ROS production was measured by Amplex Red and aconitase activity assays. Acylcarnitine tissue content was measured and concentration-response curves of complex IV inhibition by palmitoylcarnitine were obtained. RESULTS: Intralipid® did not exert protection in early diabetic hearts, while sevoflurane improved functional recovery. Sevoflurane protection was abolished by concomitant administration of the ROS scavenger N-2-mercaptopropionyl glycine. Sevoflurane, but not Intralipid® produced protective ROS during reperfusion, which activated Akt. Intralipid® failed to inhibit respiratory complex IV, while sevoflurane inhibited complex I. Early diabetic hearts exhibited reduced carnitine-palmitoyl-transferase-1 activity, but palmitoylcarnitine could not rescue protection and enhance postischemic functional recovery. Cardiac mitochondria from early diabetic rats exhibited an increased content of subunit IV-2 of respiratory complex IV and of uncoupling protein-3. CONCLUSIONS: Early type-2 diabetic hearts lose complex IV-mediated protection by Intralipid® potentially due to a switch in complex IV subunit expression and increased mitochondrial uncoupling, but are amenable to complex I-mediated sevoflurane protection. |
---|