Cargando…
Integrating Transcriptomics with Metabolic Modeling Predicts Biomarkers and Drug Targets for Alzheimer's Disease
Accumulating evidence links numerous abnormalities in cerebral metabolism with the progression of Alzheimer's disease (AD), beginning in its early stages. Here, we integrate transcriptomic data from AD patients with a genome-scale computational human metabolic model to characterize the altered...
Autores principales: | Stempler, Shiri, Yizhak, Keren, Ruppin, Eytan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134302/ https://www.ncbi.nlm.nih.gov/pubmed/25127241 http://dx.doi.org/10.1371/journal.pone.0105383 |
Ejemplares similares
-
Analyzing Gene Expression from Whole Tissue vs. Different Cell Types Reveals the Central Role of Neurons in Predicting Severity of Alzheimer’s Disease
por: Stempler, Shiri, et al.
Publicado: (2012) -
Correction: Analyzing Gene Expression from Whole Tissue vs. Different Cell Types Reveals the Central Role of Neurons in Predicting Severity of Alzheimer’s Disease
por: Stempler, Shiri, et al.
Publicado: (2012) -
Metabolic modeling predicts perturbations extending lifespan in yeast and counteracting aging in mammalian muscle
por: Yizhak, Keren, et al.
Publicado: (2012) -
Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
por: Yizhak, Keren, et al.
Publicado: (2010) -
Modeling cancer metabolism on a genome scale
por: Yizhak, Keren, et al.
Publicado: (2015)