Cargando…
Genome-Wide Characterization of Insertion and Deletion Variation in Chicken Using Next Generation Sequencing
Insertion and deletion (INDEL) is one of the main events contributing to genetic and phenotypic diversity, which receives less attention than SNP and large structural variation. To gain a better knowledge of INDEL variation in chicken genome, we applied next generation sequencing on 12 diverse chick...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136736/ https://www.ncbi.nlm.nih.gov/pubmed/25133774 http://dx.doi.org/10.1371/journal.pone.0104652 |
_version_ | 1782331018153295872 |
---|---|
author | Yan, Yiyuan Yi, Guoqiang Sun, Congjiao Qu, Lujiang Yang, Ning |
author_facet | Yan, Yiyuan Yi, Guoqiang Sun, Congjiao Qu, Lujiang Yang, Ning |
author_sort | Yan, Yiyuan |
collection | PubMed |
description | Insertion and deletion (INDEL) is one of the main events contributing to genetic and phenotypic diversity, which receives less attention than SNP and large structural variation. To gain a better knowledge of INDEL variation in chicken genome, we applied next generation sequencing on 12 diverse chicken breeds at an average effective depth of 8.6. Over 1.3 million non-redundant short INDELs (1–49 bp) were obtained, the vast majority (92.48%) of which were novel. Follow-up validation assays confirmed that most (88.00%) of the randomly selected INDELs represent true variations. The majority (95.76%) of INDELs were less than 10 bp. Both the detected number and affected bases were larger for deletions than insertions. In total, INDELs covered 3.8 Mbp, corresponding to 0.36% of the chicken genome. The average genomic INDEL density was estimated as 0.49 per kb. INDELs were ubiquitous and distributed in a non-uniform fashion across chromosomes, with lower INDEL density in micro-chromosomes than in others, and some functional regions like exons and UTRs were prone to less INDELs than introns and intergenic regions. Nearly 620,253 INDELs fell in genic regions, 1,765 (0.28%) of which located in exons, spanning 1,358 (7.56%) unique Ensembl genes. Many of them are associated with economically important traits and some are the homologues of human disease-related genes. We demonstrate that sequencing multiple individuals at a medium depth offers a promising way for reliable identification of INDELs. The coding INDELs are valuable candidates for further elucidation of the association between genotypes and phenotypes. The chicken INDELs revealed by our study can be useful for future studies, including development of INDEL markers, construction of high density linkage map, INDEL arrays design, and hopefully, molecular breeding programs in chicken. |
format | Online Article Text |
id | pubmed-4136736 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41367362014-08-20 Genome-Wide Characterization of Insertion and Deletion Variation in Chicken Using Next Generation Sequencing Yan, Yiyuan Yi, Guoqiang Sun, Congjiao Qu, Lujiang Yang, Ning PLoS One Research Article Insertion and deletion (INDEL) is one of the main events contributing to genetic and phenotypic diversity, which receives less attention than SNP and large structural variation. To gain a better knowledge of INDEL variation in chicken genome, we applied next generation sequencing on 12 diverse chicken breeds at an average effective depth of 8.6. Over 1.3 million non-redundant short INDELs (1–49 bp) were obtained, the vast majority (92.48%) of which were novel. Follow-up validation assays confirmed that most (88.00%) of the randomly selected INDELs represent true variations. The majority (95.76%) of INDELs were less than 10 bp. Both the detected number and affected bases were larger for deletions than insertions. In total, INDELs covered 3.8 Mbp, corresponding to 0.36% of the chicken genome. The average genomic INDEL density was estimated as 0.49 per kb. INDELs were ubiquitous and distributed in a non-uniform fashion across chromosomes, with lower INDEL density in micro-chromosomes than in others, and some functional regions like exons and UTRs were prone to less INDELs than introns and intergenic regions. Nearly 620,253 INDELs fell in genic regions, 1,765 (0.28%) of which located in exons, spanning 1,358 (7.56%) unique Ensembl genes. Many of them are associated with economically important traits and some are the homologues of human disease-related genes. We demonstrate that sequencing multiple individuals at a medium depth offers a promising way for reliable identification of INDELs. The coding INDELs are valuable candidates for further elucidation of the association between genotypes and phenotypes. The chicken INDELs revealed by our study can be useful for future studies, including development of INDEL markers, construction of high density linkage map, INDEL arrays design, and hopefully, molecular breeding programs in chicken. Public Library of Science 2014-08-18 /pmc/articles/PMC4136736/ /pubmed/25133774 http://dx.doi.org/10.1371/journal.pone.0104652 Text en © 2014 Yan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Yan, Yiyuan Yi, Guoqiang Sun, Congjiao Qu, Lujiang Yang, Ning Genome-Wide Characterization of Insertion and Deletion Variation in Chicken Using Next Generation Sequencing |
title | Genome-Wide Characterization of Insertion and Deletion Variation in Chicken Using Next Generation Sequencing |
title_full | Genome-Wide Characterization of Insertion and Deletion Variation in Chicken Using Next Generation Sequencing |
title_fullStr | Genome-Wide Characterization of Insertion and Deletion Variation in Chicken Using Next Generation Sequencing |
title_full_unstemmed | Genome-Wide Characterization of Insertion and Deletion Variation in Chicken Using Next Generation Sequencing |
title_short | Genome-Wide Characterization of Insertion and Deletion Variation in Chicken Using Next Generation Sequencing |
title_sort | genome-wide characterization of insertion and deletion variation in chicken using next generation sequencing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136736/ https://www.ncbi.nlm.nih.gov/pubmed/25133774 http://dx.doi.org/10.1371/journal.pone.0104652 |
work_keys_str_mv | AT yanyiyuan genomewidecharacterizationofinsertionanddeletionvariationinchickenusingnextgenerationsequencing AT yiguoqiang genomewidecharacterizationofinsertionanddeletionvariationinchickenusingnextgenerationsequencing AT suncongjiao genomewidecharacterizationofinsertionanddeletionvariationinchickenusingnextgenerationsequencing AT qulujiang genomewidecharacterizationofinsertionanddeletionvariationinchickenusingnextgenerationsequencing AT yangning genomewidecharacterizationofinsertionanddeletionvariationinchickenusingnextgenerationsequencing |