Cargando…
Bistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation
Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138020/ https://www.ncbi.nlm.nih.gov/pubmed/25136970 http://dx.doi.org/10.1371/journal.pbio.1001928 |
_version_ | 1782331178885316608 |
---|---|
author | Arnoldini, Markus Vizcarra, Ima Avalos Peña-Miller, Rafael Stocker, Nicolas Diard, Médéric Vogel, Viola Beardmore, Robert E. Hardt, Wolf-Dietrich Ackermann, Martin |
author_facet | Arnoldini, Markus Vizcarra, Ima Avalos Peña-Miller, Rafael Stocker, Nicolas Diard, Médéric Vogel, Viola Beardmore, Robert E. Hardt, Wolf-Dietrich Ackermann, Martin |
author_sort | Arnoldini, Markus |
collection | PubMed |
description | Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulence gene expression in this organism also promotes survival against exposure to antibiotics through a bet-hedging mechanism. Using microfluidic devices in combination with fluorescence time-lapse microscopy and quantitative image analysis, we analyzed the expression of virulence genes at the single cell level and related it to survival when exposed to antibiotics. We found that, across different types of antibiotics and under concentrations that are clinically relevant, the subpopulation of bacterial cells that express virulence genes shows increased survival after exposure to antibiotics. Intriguingly, there is an interplay between the two consequences of phenotypic heterogeneity. The bet-hedging effect that arises through heterogeneity in virulence gene expression can protect clonal populations against avirulent mutants that exploit and subvert the division of labor within these populations. We conclude that bet-hedging and the division of labor can arise through variation in a single trait and interact with each other. This reveals a new degree of functional complexity of phenotypic heterogeneity. In addition, our results suggest a general principle of how pathogens can evade antibiotics: Expression of virulence factors often entails metabolic costs and the resulting growth retardation could generally increase tolerance against antibiotics and thus compromise treatment. |
format | Online Article Text |
id | pubmed-4138020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41380202014-08-20 Bistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation Arnoldini, Markus Vizcarra, Ima Avalos Peña-Miller, Rafael Stocker, Nicolas Diard, Médéric Vogel, Viola Beardmore, Robert E. Hardt, Wolf-Dietrich Ackermann, Martin PLoS Biol Research Article Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulence gene expression in this organism also promotes survival against exposure to antibiotics through a bet-hedging mechanism. Using microfluidic devices in combination with fluorescence time-lapse microscopy and quantitative image analysis, we analyzed the expression of virulence genes at the single cell level and related it to survival when exposed to antibiotics. We found that, across different types of antibiotics and under concentrations that are clinically relevant, the subpopulation of bacterial cells that express virulence genes shows increased survival after exposure to antibiotics. Intriguingly, there is an interplay between the two consequences of phenotypic heterogeneity. The bet-hedging effect that arises through heterogeneity in virulence gene expression can protect clonal populations against avirulent mutants that exploit and subvert the division of labor within these populations. We conclude that bet-hedging and the division of labor can arise through variation in a single trait and interact with each other. This reveals a new degree of functional complexity of phenotypic heterogeneity. In addition, our results suggest a general principle of how pathogens can evade antibiotics: Expression of virulence factors often entails metabolic costs and the resulting growth retardation could generally increase tolerance against antibiotics and thus compromise treatment. Public Library of Science 2014-08-19 /pmc/articles/PMC4138020/ /pubmed/25136970 http://dx.doi.org/10.1371/journal.pbio.1001928 Text en © 2014 Arnoldini et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Arnoldini, Markus Vizcarra, Ima Avalos Peña-Miller, Rafael Stocker, Nicolas Diard, Médéric Vogel, Viola Beardmore, Robert E. Hardt, Wolf-Dietrich Ackermann, Martin Bistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation |
title | Bistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation |
title_full | Bistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation |
title_fullStr | Bistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation |
title_full_unstemmed | Bistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation |
title_short | Bistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation |
title_sort | bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138020/ https://www.ncbi.nlm.nih.gov/pubmed/25136970 http://dx.doi.org/10.1371/journal.pbio.1001928 |
work_keys_str_mv | AT arnoldinimarkus bistableexpressionofvirulencegenesinsalmonellaleadstotheformationofanantibiotictolerantsubpopulation AT vizcarraimaavalos bistableexpressionofvirulencegenesinsalmonellaleadstotheformationofanantibiotictolerantsubpopulation AT penamillerrafael bistableexpressionofvirulencegenesinsalmonellaleadstotheformationofanantibiotictolerantsubpopulation AT stockernicolas bistableexpressionofvirulencegenesinsalmonellaleadstotheformationofanantibiotictolerantsubpopulation AT diardmederic bistableexpressionofvirulencegenesinsalmonellaleadstotheformationofanantibiotictolerantsubpopulation AT vogelviola bistableexpressionofvirulencegenesinsalmonellaleadstotheformationofanantibiotictolerantsubpopulation AT beardmoreroberte bistableexpressionofvirulencegenesinsalmonellaleadstotheformationofanantibiotictolerantsubpopulation AT hardtwolfdietrich bistableexpressionofvirulencegenesinsalmonellaleadstotheformationofanantibiotictolerantsubpopulation AT ackermannmartin bistableexpressionofvirulencegenesinsalmonellaleadstotheformationofanantibiotictolerantsubpopulation |