Cargando…
Molecular Signatures of the Evolving Immune Response in Mice following a Bordetella pertussis Infection
Worldwide resurgence of pertussis necessitates the need for improvement of pertussis vaccines and vaccination strategies. Since natural infections induce a longer-lasting immunity than vaccinations, detailed knowledge of the immune responses following natural infection can provide important clues fo...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138111/ https://www.ncbi.nlm.nih.gov/pubmed/25137043 http://dx.doi.org/10.1371/journal.pone.0104548 |
_version_ | 1782331195443380224 |
---|---|
author | Raeven, René H. M. Brummelman, Jolanda Pennings, Jeroen L. A. Nijst, Olaf E. M. Kuipers, Betsy Blok, Laura E. R. Helm, Kina van Riet, Elly Jiskoot, Wim van Els, Cecile A. C. M. Han, Wanda G. H. Kersten, Gideon F. A. Metz, Bernard |
author_facet | Raeven, René H. M. Brummelman, Jolanda Pennings, Jeroen L. A. Nijst, Olaf E. M. Kuipers, Betsy Blok, Laura E. R. Helm, Kina van Riet, Elly Jiskoot, Wim van Els, Cecile A. C. M. Han, Wanda G. H. Kersten, Gideon F. A. Metz, Bernard |
author_sort | Raeven, René H. M. |
collection | PubMed |
description | Worldwide resurgence of pertussis necessitates the need for improvement of pertussis vaccines and vaccination strategies. Since natural infections induce a longer-lasting immunity than vaccinations, detailed knowledge of the immune responses following natural infection can provide important clues for such improvement. The purpose was to elucidate the kinetics of the protective immune response evolving after experimental Bordetella pertussis (B. pertussis) infection in mice. Data were collected from (i) individual analyses, i.e. microarray, flow cytometry, multiplex immunoassays, and bacterial clearance; (ii) twelve time points during the infection; and (iii) different tissues involved in the immune responses, i.e. lungs, spleen and blood. Combined data revealed detailed insight in molecular and cellular sequence of events connecting different phases (innate, bridging and adaptive) of the immune response following the infection. We detected a prolonged acute phase response, broad pathogen recognition, and early gene signatures of subsequent T-cell recruitment in the lungs. Activation of particular transcription factors and specific cell markers provided insight into the time course of the transition from innate towards adaptive immune responses, which resulted in a broad spectrum of systemic antibody subclasses and splenic Th1/Th17 memory cells against B. pertussis. In addition, signatures preceding the local generation of Th1 and Th17 cells as well as IgA in the lungs, considered key elements in protection against B. pertussis, were established. In conclusion, molecular and cellular immunological processes in response to live B. pertussis infection were unraveled, which may provide guidance in selecting new vaccine candidates that should evoke local and prolonged protective immune responses. |
format | Online Article Text |
id | pubmed-4138111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41381112014-08-20 Molecular Signatures of the Evolving Immune Response in Mice following a Bordetella pertussis Infection Raeven, René H. M. Brummelman, Jolanda Pennings, Jeroen L. A. Nijst, Olaf E. M. Kuipers, Betsy Blok, Laura E. R. Helm, Kina van Riet, Elly Jiskoot, Wim van Els, Cecile A. C. M. Han, Wanda G. H. Kersten, Gideon F. A. Metz, Bernard PLoS One Research Article Worldwide resurgence of pertussis necessitates the need for improvement of pertussis vaccines and vaccination strategies. Since natural infections induce a longer-lasting immunity than vaccinations, detailed knowledge of the immune responses following natural infection can provide important clues for such improvement. The purpose was to elucidate the kinetics of the protective immune response evolving after experimental Bordetella pertussis (B. pertussis) infection in mice. Data were collected from (i) individual analyses, i.e. microarray, flow cytometry, multiplex immunoassays, and bacterial clearance; (ii) twelve time points during the infection; and (iii) different tissues involved in the immune responses, i.e. lungs, spleen and blood. Combined data revealed detailed insight in molecular and cellular sequence of events connecting different phases (innate, bridging and adaptive) of the immune response following the infection. We detected a prolonged acute phase response, broad pathogen recognition, and early gene signatures of subsequent T-cell recruitment in the lungs. Activation of particular transcription factors and specific cell markers provided insight into the time course of the transition from innate towards adaptive immune responses, which resulted in a broad spectrum of systemic antibody subclasses and splenic Th1/Th17 memory cells against B. pertussis. In addition, signatures preceding the local generation of Th1 and Th17 cells as well as IgA in the lungs, considered key elements in protection against B. pertussis, were established. In conclusion, molecular and cellular immunological processes in response to live B. pertussis infection were unraveled, which may provide guidance in selecting new vaccine candidates that should evoke local and prolonged protective immune responses. Public Library of Science 2014-08-19 /pmc/articles/PMC4138111/ /pubmed/25137043 http://dx.doi.org/10.1371/journal.pone.0104548 Text en © 2014 Raeven et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Raeven, René H. M. Brummelman, Jolanda Pennings, Jeroen L. A. Nijst, Olaf E. M. Kuipers, Betsy Blok, Laura E. R. Helm, Kina van Riet, Elly Jiskoot, Wim van Els, Cecile A. C. M. Han, Wanda G. H. Kersten, Gideon F. A. Metz, Bernard Molecular Signatures of the Evolving Immune Response in Mice following a Bordetella pertussis Infection |
title | Molecular Signatures of the Evolving Immune Response in Mice following a Bordetella pertussis Infection |
title_full | Molecular Signatures of the Evolving Immune Response in Mice following a Bordetella pertussis Infection |
title_fullStr | Molecular Signatures of the Evolving Immune Response in Mice following a Bordetella pertussis Infection |
title_full_unstemmed | Molecular Signatures of the Evolving Immune Response in Mice following a Bordetella pertussis Infection |
title_short | Molecular Signatures of the Evolving Immune Response in Mice following a Bordetella pertussis Infection |
title_sort | molecular signatures of the evolving immune response in mice following a bordetella pertussis infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138111/ https://www.ncbi.nlm.nih.gov/pubmed/25137043 http://dx.doi.org/10.1371/journal.pone.0104548 |
work_keys_str_mv | AT raevenrenehm molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT brummelmanjolanda molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT penningsjeroenla molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT nijstolafem molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT kuipersbetsy molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT bloklauraer molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT helmkina molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT vanrietelly molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT jiskootwim molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT vanelscecileacm molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT hanwandagh molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT kerstengideonfa molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection AT metzbernard molecularsignaturesoftheevolvingimmuneresponseinmicefollowingabordetellapertussisinfection |