Cargando…

Oligomerization Mechanisms of an H-NS Family Protein, Pmr, Encoded on the Plasmid pCAR1 Provide a Molecular Basis for Functions of H-NS Family Members

Enterobacterial H-NS-like proteins and Pseudomonas MvaT-like proteins share low homology at the amino acid sequence level, but both can function as xenogeneic silencers and are included in the H-NS family of proteins. H-NS family members have dimerization/oligomerization and DNA-binding domains conn...

Descripción completa

Detalles Bibliográficos
Autores principales: Suzuki, Chiho, Kawazuma, Kohei, Horita, Shoichiro, Terada, Tohru, Tanokura, Masaru, Okada, Kazunori, Yamane, Hisakazu, Nojiri, Hideaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138198/
https://www.ncbi.nlm.nih.gov/pubmed/25137042
http://dx.doi.org/10.1371/journal.pone.0105656
Descripción
Sumario:Enterobacterial H-NS-like proteins and Pseudomonas MvaT-like proteins share low homology at the amino acid sequence level, but both can function as xenogeneic silencers and are included in the H-NS family of proteins. H-NS family members have dimerization/oligomerization and DNA-binding domains connected by a flexible linker and form large nucleoprotein complexes using both domains. Pmr, an MvaT-like protein encoded on the IncP-7 carbazole-degradative plasmid pCAR1, is a key regulator of an interaction between pCAR1 and its host Pseudomonas putida KT2440. KT2440 has two transcribed genes that encode the MvaT-like proteins TurA and TurB. Our previous transcriptome analyses suggested that the functions of Pmr, TurA and TurB are non-equivalent, although the detailed underlying mechanisms remain unclear. In this study, we focused on the protein–protein interactions of Pmr, and assessed the homo-oligomerization capacity of various substituted and truncated Pmr derivatives by protein–protein cross-linking analysis. Six of the seven residues identified as important for homo-oligomerization in Pmr were located near the N-terminus, and the putative flexible linker or the region near that was not involved in homo-oligomerization, suggesting that Pmr homo-oligomerization is different from that of enterobacterial H-NS and that the functional mechanism differs between H-NS-like and MvaT-like proteins. In addition, we assessed homo- and hetero-oligomerization of Pmr by surface plasmon resonance analysis and found that the coupling ratio of TurB-Pmr oligomers is smaller than that of Pmr-Pmr or TurA-Pmr oligomers. These results raised the possibility that composition of the hetero-oligomers of Pmr, TurA, and TurB could explain why the different gene sets were affected by either pmr, turA, or turB disruption in our previous studies.