Cargando…
Deep learning for neuroimaging: a validation study
Deep learning methods have recently made notable advances in the tasks of classification and representation learning. These tasks are important for brain imaging and neuroscience discovery, making the methods attractive for porting to a neuroimager's toolbox. Success of these methods is, in par...
Autores principales: | Plis, Sergey M., Hjelm, Devon R., Salakhutdinov, Ruslan, Allen, Elena A., Bockholt, Henry J., Long, Jeffrey D., Johnson, Hans J., Paulsen, Jane S., Turner, Jessica A., Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138493/ https://www.ncbi.nlm.nih.gov/pubmed/25191215 http://dx.doi.org/10.3389/fnins.2014.00229 |
Ejemplares similares
-
Patterns of Co-Occurring Gray Matter Concentration Loss across the Huntington Disease Prodrome
por: Ciarochi, Jennifer Ashley, et al.
Publicado: (2016) -
High and Low Levels of an NTRK2-Driven Genetic Profile Affect Motor- and Cognition-Associated Frontal Gray Matter in Prodromal Huntington’s Disease
por: Ciarochi, Jennifer A., et al.
Publicado: (2018) -
Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation
por: Sarwate, Anand D., et al.
Publicado: (2014) -
Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
por: Abrol, Anees, et al.
Publicado: (2021) -
Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks
por: Hjelm, R. Devon, et al.
Publicado: (2018)