Cargando…

Matroidal Structure of Generalized Rough Sets Based on Tolerance Relations

Rough set theory provides an effective tool to deal with uncertain, granular, and incomplete knowledge in information systems. Matroid theory generalizes the linear independence in vector spaces and has many applications in diverse fields, such as combinatorial optimization and rough sets. In this p...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hui, Liu, Yanfang, Zhu, William
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138953/
https://www.ncbi.nlm.nih.gov/pubmed/25162044
http://dx.doi.org/10.1155/2014/243070
Descripción
Sumario:Rough set theory provides an effective tool to deal with uncertain, granular, and incomplete knowledge in information systems. Matroid theory generalizes the linear independence in vector spaces and has many applications in diverse fields, such as combinatorial optimization and rough sets. In this paper, we construct a matroidal structure of the generalized rough set based on a tolerance relation. First, a family of sets are constructed through the lower approximation of a tolerance relation and they are proved to satisfy the circuit axioms of matroids. Thus we establish a matroid with the family of sets as its circuits. Second, we study the properties of the matroid including the base and the rank function. Moreover, we investigate the relationship between the upper approximation operator based on a tolerance relation and the closure operator of the matroid induced by the tolerance relation. Finally, from a tolerance relation, we can get a matroid of the generalized rough set based on the tolerance relation. The matroid can also induce a new relation. We investigate the connection between the original tolerance relation and the induced relation.