Cargando…
An Adaboost-Backpropagation Neural Network for Automated Image Sentiment Classification
The development of multimedia technology and the popularisation of image capture devices have resulted in the rapid growth of digital images. The reliance on advanced technology to extract and automatically classify the emotional semantics implicit in images has become a critical problem. We propose...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139083/ https://www.ncbi.nlm.nih.gov/pubmed/25162047 http://dx.doi.org/10.1155/2014/364649 |
_version_ | 1782331319676567552 |
---|---|
author | Cao, Jianfang Chen, Junjie Li, Haifang |
author_facet | Cao, Jianfang Chen, Junjie Li, Haifang |
author_sort | Cao, Jianfang |
collection | PubMed |
description | The development of multimedia technology and the popularisation of image capture devices have resulted in the rapid growth of digital images. The reliance on advanced technology to extract and automatically classify the emotional semantics implicit in images has become a critical problem. We proposed an emotional semantic classification method for images based on the Adaboost-backpropagation (BP) neural network, using natural scenery images as examples. We described image emotions using the Ortony, Clore, and Collins emotion model and constructed a strong classifier by integrating 15 outputs of a BP neural network based on the Adaboost algorithm. The objective of the study was to improve the efficiency of emotional image classification. Using 600 natural scenery images downloaded from the Baidu photo channel to train and test the model, our experiments achieved results superior to the results obtained using the BP neural network method. The accuracy rate increased by approximately 15% compared with the method previously reported in the literature. The proposed method provides a foundation for the development of additional automatic sentiment image classification methods and demonstrates practical value. |
format | Online Article Text |
id | pubmed-4139083 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-41390832014-08-26 An Adaboost-Backpropagation Neural Network for Automated Image Sentiment Classification Cao, Jianfang Chen, Junjie Li, Haifang ScientificWorldJournal Research Article The development of multimedia technology and the popularisation of image capture devices have resulted in the rapid growth of digital images. The reliance on advanced technology to extract and automatically classify the emotional semantics implicit in images has become a critical problem. We proposed an emotional semantic classification method for images based on the Adaboost-backpropagation (BP) neural network, using natural scenery images as examples. We described image emotions using the Ortony, Clore, and Collins emotion model and constructed a strong classifier by integrating 15 outputs of a BP neural network based on the Adaboost algorithm. The objective of the study was to improve the efficiency of emotional image classification. Using 600 natural scenery images downloaded from the Baidu photo channel to train and test the model, our experiments achieved results superior to the results obtained using the BP neural network method. The accuracy rate increased by approximately 15% compared with the method previously reported in the literature. The proposed method provides a foundation for the development of additional automatic sentiment image classification methods and demonstrates practical value. Hindawi Publishing Corporation 2014 2014-08-04 /pmc/articles/PMC4139083/ /pubmed/25162047 http://dx.doi.org/10.1155/2014/364649 Text en Copyright © 2014 Jianfang Cao et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Cao, Jianfang Chen, Junjie Li, Haifang An Adaboost-Backpropagation Neural Network for Automated Image Sentiment Classification |
title | An Adaboost-Backpropagation Neural Network for Automated Image Sentiment Classification |
title_full | An Adaboost-Backpropagation Neural Network for Automated Image Sentiment Classification |
title_fullStr | An Adaboost-Backpropagation Neural Network for Automated Image Sentiment Classification |
title_full_unstemmed | An Adaboost-Backpropagation Neural Network for Automated Image Sentiment Classification |
title_short | An Adaboost-Backpropagation Neural Network for Automated Image Sentiment Classification |
title_sort | adaboost-backpropagation neural network for automated image sentiment classification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139083/ https://www.ncbi.nlm.nih.gov/pubmed/25162047 http://dx.doi.org/10.1155/2014/364649 |
work_keys_str_mv | AT caojianfang anadaboostbackpropagationneuralnetworkforautomatedimagesentimentclassification AT chenjunjie anadaboostbackpropagationneuralnetworkforautomatedimagesentimentclassification AT lihaifang anadaboostbackpropagationneuralnetworkforautomatedimagesentimentclassification AT caojianfang adaboostbackpropagationneuralnetworkforautomatedimagesentimentclassification AT chenjunjie adaboostbackpropagationneuralnetworkforautomatedimagesentimentclassification AT lihaifang adaboostbackpropagationneuralnetworkforautomatedimagesentimentclassification |