Cargando…

Naming Game on Networks: Let Everyone be Both Speaker and Hearer

To investigate how consensus is reached on a large self-organized peer-to-peer network, we extended the naming game model commonly used in language and communication to Naming Game in Groups (NGG). Differing from other existing naming game models, in NGG everyone in the population (network) can be b...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Yuan, Chen, Guanrong, Chan, Rosa H. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139946/
https://www.ncbi.nlm.nih.gov/pubmed/25143140
http://dx.doi.org/10.1038/srep06149
Descripción
Sumario:To investigate how consensus is reached on a large self-organized peer-to-peer network, we extended the naming game model commonly used in language and communication to Naming Game in Groups (NGG). Differing from other existing naming game models, in NGG everyone in the population (network) can be both speaker and hearer simultaneously, which resembles in a closer manner to real-life scenarios. Moreover, NGG allows the transmission (communication) of multiple words (opinions) for multiple intra-group consensuses. The communications among indirectly-connected nodes are also enabled in NGG. We simulated and analyzed the consensus process in some typical network topologies, including random-graph networks, small-world networks and scale-free networks, to better understand how global convergence (consensus) could be reached on one common word. The results are interpreted on group negotiation of a peer-to-peer network, which shows that global consensus in the population can be reached more rapidly when more opinions are permitted within each group or when the negotiating groups in the population are larger in size. The novel features and properties introduced by our model have demonstrated its applicability in better investigating general consensus problems on peer-to-peer networks.