Cargando…

Response of cardiac endothelial nitric oxide synthase to plasma viscosity modulation in acute isovolemic hemodilution

BACKGROUND: Endothelial nitric oxide synthase (eNOS) is generally expressed in endocardial cells, vascular endothelial cells and ventricular myocytes. However, there is no experimental study elucidating the relationship between cardiac eNOS expression and elevated plasma viscosity in low oxygen deli...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanokwiroon, Kanyanatt, Chatpun, Surapong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140050/
https://www.ncbi.nlm.nih.gov/pubmed/25161348
http://dx.doi.org/10.4103/0973-6247.137444
Descripción
Sumario:BACKGROUND: Endothelial nitric oxide synthase (eNOS) is generally expressed in endocardial cells, vascular endothelial cells and ventricular myocytes. However, there is no experimental study elucidating the relationship between cardiac eNOS expression and elevated plasma viscosity in low oxygen delivery pathological conditions such as hemorrhagic shock-resuscitation and hemodilution. This study tested the hypothesis that elevated plasma viscosity increases cardiac eNOS expression in a hemodilution model, leading to positive effects on cardiac performance. MATERIALS AND METHODS: Two groups of golden Syrian hamster underwent an acute isovolemic hemodilution where 40% of blood volume was exchanged with 2% (low-viscogenic plasma expander [LVPE]) or 6% (high-viscogenic plasma expander [HVPE]) of dextran 2000 kDa. In control group, experiment was performed without hemodilution. All groups were performed in awake condition. Experimental parameters, i.e., mean arterial blood pressure (MAP), heart rate, hematocrit, blood gas content and viscosity, were measured. The eNOS expression was evaluated by eNOS Western blot analysis. RESULTS: After hemodilution, MAP decreased to 72% and 93% of baseline in the LVPE and HVPE, respectively. Furthermore, pO(2) in the LVPE group increased highest among the groups. Plasma viscosity in the HVPE group was significantly higher than that in control and LVPE groups. The expression of eNOS in the HVPE group showed higher intensity compared to other groups, especially compared with the control group. CONCLUSION: Our results demonstrated that cardiac eNOS has responded to plasma viscosity modulation with HVPE and LVPE. This particularly supports the previous studies that revealed the positive effects on cardiac function in animals hemodiluted with HVPE.