Cargando…

Minimally Invasive Subcortical Parafascicular Transsulcal Access for Clot Evacuation (Mi SPACE) for Intracerebral Hemorrhage

Background. Spontaneous intracerebral hemorrhage (ICH) is common and causes significant mortality and morbidity. To date, optimal medical and surgical intervention remains uncertain. A lack of definitive benefit for operative management may be attributable to adverse surgical effect, collateral tiss...

Descripción completa

Detalles Bibliográficos
Autores principales: Ritsma, Benjamin, Kassam, Amin, Dowlatshahi, Dariush, Nguyen, Thanh, Stotts, Grant
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140146/
https://www.ncbi.nlm.nih.gov/pubmed/25165588
http://dx.doi.org/10.1155/2014/102307
Descripción
Sumario:Background. Spontaneous intracerebral hemorrhage (ICH) is common and causes significant mortality and morbidity. To date, optimal medical and surgical intervention remains uncertain. A lack of definitive benefit for operative management may be attributable to adverse surgical effect, collateral tissue injury. This is particularly relevant for ICH in dominant, eloquent cortex. Minimally invasive surgery (MIS) offers the potential advantage of reduced collateral damage. MIS utilizing a parafascicular approach has demonstrated such benefit for intracranial tumor resection. Methods. We present a case of dominant hemisphere spontaneous ICH evacuated via the minimally invasive subcortical parafascicular transsulcal access clot evacuation (Mi SPACE) model. We use this report to introduce Mi SPACE and to examine the application of this novel MIS paradigm. Case Presentation. The featured patient presented with a left temporal ICH and severe global aphasia. The hematoma was evacuated via the Mi SPACE approach. Postoperative reassessments showed significant improvement. At two months, bedside language testing was normal. MRI tractography confirmed limited collateral injury. Conclusions. This case illustrates successful application of the Mi SPACE model to ICH in dominant, eloquent cortex and subcortical regions. MRI tractography illustrates collateral tissue preservation. Safety and feasibility studies are required to further assess this promising new therapeutic paradigm.