Cargando…
Is adding more indicators to a latent class analysis beneficial or detrimental? Results of a Monte-Carlo study
The purpose of this study was to examine in which way adding more indicators or a covariate influences the performance of latent class analysis (LCA). We varied the sample size (100 ≤ N ≤ 2000), number, and quality of binary indicators (between 4 and 12 indicators with conditional response probabili...
Autores principales: | Wurpts, Ingrid C., Geiser, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140387/ https://www.ncbi.nlm.nih.gov/pubmed/25191298 http://dx.doi.org/10.3389/fpsyg.2014.00920 |
Ejemplares similares
-
Skew t Mixture Latent State-Trait Analysis: A Monte Carlo Simulation Study on Statistical Performance
por: Hohmann, Louisa, et al.
Publicado: (2018) -
Analyzing latent state-trait and multiple-indicator latent growth curve models as multilevel structural equation models
por: Geiser, Christian, et al.
Publicado: (2013) -
The Many Faces of Part-List Cuing—Evidence for the Interplay Between Detrimental and Beneficial Mechanisms
por: Lehmer, Eva-Maria, et al.
Publicado: (2018) -
The Effect of Faking on the Correlation Between Two Ordinal Variables: Some Population and Monte Carlo Results
por: Bressan, Marco, et al.
Publicado: (2018) -
Investigating the Applicability of Alignment—A Monte Carlo Simulation Study
por: Wen, Congcong, et al.
Publicado: (2022)