Cargando…
Catalytic Zinc Complexes for Phosphate Diester Hydrolysis**
Creating efficient artificial catalysts that can compete with biocatalysis has been an enduring challenge which has yet to be met. Reported herein is the synthesis and characterization of a series of zinc complexes designed to catalyze the hydrolysis of phosphate diesters. By introducing a hydrated...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY-VCH Verlag
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140542/ https://www.ncbi.nlm.nih.gov/pubmed/24919567 http://dx.doi.org/10.1002/anie.201400335 |
Sumario: | Creating efficient artificial catalysts that can compete with biocatalysis has been an enduring challenge which has yet to be met. Reported herein is the synthesis and characterization of a series of zinc complexes designed to catalyze the hydrolysis of phosphate diesters. By introducing a hydrated aldehyde into the ligand we achieve turnover for DNA-like substrates which, combined with ligand methylation, increases reactivity by two orders of magnitude. In contrast to current orthodoxy and mechanistic explanations, we propose a mechanism where the nucleophile is not coordinated to the metal ion, but involves a tautomer with a more effective Lewis acid and more reactive nucleophile. This data suggests a new strategy for creating more efficient metal ion based catalysts, and highlights a possible mode of action for metalloenzymes. |
---|